scholarly journals Flexural Strength of Different Monolithic Computer-Assisted Design and Computer-Assisted Manufacturing Ceramic Materials upon Different Thermal Tempering Processes

2020 ◽  
Vol 14 (04) ◽  
pp. 566-574
Author(s):  
Niwut Juntavee ◽  
Pithiwat Uasuwan

Abstract Objective Strength of ceramics related with sintering procedure. This study investigated the influence of different tempering processes on flexural strength of three monolithic ceramic materials. Materials and Methods  Specimens were prepared in bar-shape (width × length × thickness = 4 × 14 × 1.2 mm) from yttria-stabilized tetragonal zirconia polycrystalline (Y-TZP, inCoris TZI [I]), zirconia-reinforced lithium silicate (ZLS, Vita Suprinity [V]), and lithium disilicate (LS2, IPS e.max CAD [E]), and sintered with different tempering processes: slow (S), normal (N), and fast (F) cooling procedure (n = 15/group). Flexural strength (σ) was determined using three-point bending test apparatus at 1 mm/min crosshead speed. Statistical Analysis  The analysis of variance and Bonferroni’s multiple comparisons were determined for significant difference (α = 0.05). Weibull analysis was applied for survival probability, Weibull modulus (m), and characteristics strength (σo). Microstructures were evaluated with scanning electron microscope and X-ray diffraction. Results  The mean ± standard deviation (MPa) of σ, m, and σo were: 1,183.98 ± 204.26, 6.23, 1,271.80 for IS; 1,084.43 ± 204.79, 5.76, 1,170.08 for IN; 777.19 ± 99.77, 8.78, 819.96 for IF; 267.15 ± 32.71, 9.11, 281.48 for VS; 218.43 ± 38.46, 6.40, 234.23 for VN; 252.67 ± 37.58, 7.20, 269.23 for VF; 392.09 ± 37.91, 11.37, 409.23 for ES; 378.88 ± 55.38, 7.45, 403.11 for EN, and 390.94 ± 25.34, 16.00, 403.51 for EF. Thermal tempering significantly affected flexural strength of Y-TZP (p < 0.05), but not either ZLS or LS2 (p > 0.05). Y-TZP indicated significantly higher flexural strength upon slow tempering than others. Conclusion  Enhancing flexural strength of Y-TZP can be achieved through slow tempering process and was suggested as a process for monolithic zirconia. Strengthening of ZLS and LS2 cannot be accomplished through tempering; thus, either S-, N-, or F- tempering procedure can be performed. Nevertheless, to minimize sintering time, rapid thermal tempering is more preferable for both ZLS and LS2.

2018 ◽  
Vol 2018 ◽  
pp. 1-5 ◽  
Author(s):  
Hattanas Kumchai ◽  
Patrapan Juntavee ◽  
Arthur F. Sun ◽  
Dan Nathanson

Objective. The purpose of this study was to evaluate the effect of glazing on flexural strength of highly translucent zirconia materials. Materials and Methods. Specimens of three brands of zirconia bars (Prettau Zirconia, Zirkonzahn; inCoris TZI, Sirona; and Zirlux FC, Pentron Ceramics) were prepared and polished according to manufacturers’ instructions. Final specimen dimensions were 20 × 4 × 2 mm. The specimens from each brand were divided into 3 groups (N = 10): control, heat-treated, and glazed. Heat-treated specimens were fired without the application of the glaze material. The glaze material was applied to the glazed specimens before being fired. A three-point bending test (15 mm span) was performed in an Instron universal testing machine (ISO 6872). Data were analyzed by ANOVA and Tukey’s HSD post hoc test (α = 0.05). Results. Two-way ANOVA showed a significant influence of surface treatments on flexural strength of zirconia materials (P≤0.05). There was no significant difference in flexural strength among the different brands of highly translucent zirconia (P≥0.05). Tukey’s HSD post hoc test showed that specimens in the “glazed” group had significantly lower flexural strength than the control and heat-treated groups (P≤0.05). Conclusion. Within the limitations of the study, external glazing decreased the flexural strength of highly translucent zirconia.


2012 ◽  
Vol 457-458 ◽  
pp. 3-6
Author(s):  
Yu Huan Fei ◽  
Chuan Zhen Huang ◽  
Han Lian Liu ◽  
Bin Zou

Al2O3-TiN-TiC ceramic materials with different MgO content were fabricated by hot-pressing technique. The MgO volume percent was varied from 0vol% to 5vol%. Three point bending test was applied to get the flexural strength and the Vickers indentation was applied to get the Vickers hardness and the fracture toughness. The phase composition of the ceramics was analyzed by XRD. The effects of the content of MgO on the mechanical properties and the phase composition of Al2O3-TiN-TiC were investigated. The results shows that the addition of MgO can change the phase composition of the sintered ceramic materials which displayed with diverse solid solutions and intermetallic compounds. The convertion of the mechanical properties can also be explained by the XRD results.


Author(s):  
Osama Qutub ◽  
Salman Khalid Bashnani ◽  
Faisal Khalid Bashnaini

Introduction: One of the important aspects of provisional restorations, especially in case of long-span edentulous situations, short-height pontics, extended treatment time and in patients with para-functional habits is their flexural strength. Maintaining the integrity of the provisional restorations throughout the course of treatments is highly valuable and important to have a predictable outcome. Objectives: To evaluate and compare the flexural strength of composite based provisional materials. Materials and Methods: Materials: Group 1, conventional bisacryl composite material (Protemp 4, 3M). Group 2, Computer Assisted Designing - Computer Assisted Milling (CAD-CAM) composite provisional material (CAD Temp). Method: Twenty identical specimens sized 25×2×2-mm were prepared from each material. A standard three-point bending test was conducted on the specimens with a universal testing machine at a 0.5 mm/min crosshead speed, and the flexural strength values were calculated (MPa) for each specimen. The flexural strength data were statistically analyzed using T-Test. Results: The measured mean flexural strength values (MPa) were as follow: group1 = 99.38 in comparison to group 2 = 92.06. There were statistically significant differences among the flexural strengths of tested materials (P < 0.05), The conventional group had significantly higher flexural strength than the CAD/CAM group (p < 0.05). Conclusion: Within the limitation of this study, the bisacryl composite resin (Protemp 4) provisional material has superior flexural strength than CAD/CAM composite material. Although many authors recommended the use of CAD/CAM provisional materials, this study prove that the material composition is as important as the material method of fabrication.


2012 ◽  
Vol 23 (6) ◽  
pp. 686-691 ◽  
Author(s):  
João Paulo Lyra e Silva ◽  
Alfredo Júlio Fernandes Neto ◽  
Luís Henrique Araújo Raposo ◽  
Veridiana Resende Novais ◽  
Cleudmar Amaral de Araujo ◽  
...  

The aim of this study was to assess the effect of different plasma arc welding parameters on the flexural strength of titanium alloy beams (Ti-6Al-4V). Forty Ti-6Al-4V and 10 NiCr alloy beam specimens (40 mm long and 3.18 mm diameter) were prepared and divided into 5 groups (n=10). The titanium alloy beams for the control group were not sectioned or subjected to welding. Groups PL10, PL12, and PL14 contained titanium beams sectioned and welded at current 3 A for 10, 12 or 14 ms, respectively. Group NCB consisted of NiCr alloy beams welded using conventional torch brazing. After, the beams were subjected to a three-point bending test and the values obtained were analyzed to assess the flexural strength (MPa). Statistical analysis was carried out by one-way ANOVA and Tukey's HSD test at 0.05 confidence level. Significant difference was verified among the evaluated groups (p<0.001), with higher flexural strength for the control group (p<0.05). No significant differences was observed among the plasma welded groups (p>0.05). The NCB group showed the lowest flexural strength, although it was statistically similar to the PL 14 group (p>0.05). The weld depth penetration was not significantly different among the plasma welded groups (p=0.05). Three representative specimens were randomly selected to be evaluated under scanning electron microcopy. The composition of the welded regions was analyzed by energy dispersive X-ray spectroscopy. This study provides an initial set of parameters supporting the use of plasma welding during fabrication of titanium alloy dental frameworks.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zhenyu Tang ◽  
Xinyi Zhao ◽  
Hui Wang

Abstract Background The present study aimed to quantitate the wear of the highly transparent Yttria-stabilized tetragonal zirconia polycrystals (Y-TZP) ceramic monolithic zirconia crown on the enamel in vivo and discuss the prone position of the wear and the underlying mechanism. Methods A total of 43 patients with 43 posterior teeth were selected for full zirconia crown restoration and examined immediately, at 6 months, and at 1 year after restoration. During the follow-up visit, the fine impression of the patients’ monolithic zirconia crowns, the antagonist teeth, the corresponding contralateral natural teeth, the super plaster cast, and epoxy resin model was ontained. The model of epoxy resin was observed under a stereo microscope, and the microstructure parts were observed under a scanning electron microscope. Results After 1 year, the mean depth and volume of wearing of the monolithic zirconia crown were the smallest (all P < 0.01), while those of the antagonist teeth were significantly larger than those of the natural teeth (P < 0.0001), and no significant difference was found among the natural teeth (P = 0.3473, P = 0.6996). The amount of wear after one year was remarkably higher than that at 6 months (P < 0.0001). The microscopic observation revealed the tendency of wearing of the monolithic zirconia crown on the antagonist teeth at the protruding early contact points. Electron micrographs of tooth scars showed that the wearing mechanism of the monolithic zirconia crown on natural teeth was mainly abrasive and fatigue wear. Conclusions Although the self-wearing is insignificant, the monolithic zirconia crown can cause wear of the antagonist teeth via occlusal or early contact significantly; the amount of wearing is higher than that of natural teeth and increases over time. The wearing mechanism is mainly abrasive and fatigue wear.


2016 ◽  
Vol 27 (6) ◽  
pp. 670-674 ◽  
Author(s):  
Veridiana Resende Novais ◽  
Priscilla Barbosa Ferreira Soares ◽  
Carlla Martins Guimarães ◽  
Laís Rani Sales Oliveira Schliebe ◽  
Stella Sueli Lourenço Braga ◽  
...  

Abstract This study evaluated the effect of gamma radiation and endodontic treatment on the microhardness and flexural strength of human and bovine root dentin. Forty single-rooted human teeth and forty bovine incisor teeth were collected, cleaned and stored in distilled water at 4 °C. The human and bovine teeth were divided into 4 groups (n=10) resulting from the combination of two study factors: first, regarding the endodontic treatment in 2 levels: with or without endodontic treatment; and second, radiotherapy in two levels: with or without radiotherapy by 60 Gy of Co-60 gamma radiation fractioned into 2 Gy daily doses five days per week. Each tooth was longitudinally sectioned in two parts; one-half was used for the three-point bending test and the other for the Knoop hardness test (KHN). Data were analyzed by 3-way ANOVA and Tukey HSD test (α=0.05). No significant difference was found for flexural strength values. The human dentin had significantly higher KHN than the bovine. The endodontic treatment and radiotherapy resulted in significantly lower KHN irrespective of tooth origin. The results indicated that the radiotherapy had deleterious effects on the microhardness of human and bovine dentin and this effect is increased by the interaction with endodontic therapy. The endodontic treatment adds additional negative effect on the mechanical properties of radiated tooth dentin; the restorative protocols should be designed taking into account this effect.


2007 ◽  
Vol 14 (04) ◽  
pp. 817-820
Author(s):  
MIN HUANG ◽  
KE-ZHI LI ◽  
HE-JUN LI ◽  
QIAN-GANG FU ◽  
GUO-DONG SUN

SiC coating for carbon/carbon composites was prepared by pack cementation method. The effects of coating process on the microstructure and the mechanical properties of C / C composites were analyzed by SEM and three-point bending test, respectively. As the infiltrated Si improved the interfaces bonding during the coating process, the flexural strength and flexural modulus of SiC -coated carbon/carbon composites were both increased by about 10% than the naked C / C composites. In addition, the mechanism of the change of failure mode of SiC coated C / C composites and naked C / C composites was addressed.


2015 ◽  
Vol 40 (2) ◽  
pp. 181-189 ◽  
Author(s):  
M D'Amario ◽  
F De Angelis ◽  
M Vadini ◽  
N Marchili ◽  
S Mummolo ◽  
...  

SUMMARY The aim of this study was to assess the flexural strength, flexural elastic modulus and Vickers microhardness of three resin composites prepared at room temperature or cured after one or repeated preheating cycles to a temperature of 39°C. Three resin composites were evaluated: Enamel Plus HFO (Micerium), Opallis (FGM), and Ceram X Duo (Dentsply DeTrey). For each trial, one group of specimens of each material was fabricated under ambient laboratory conditions, whereas in the other groups, the composites were cured after 1, 10, 20, 30, or 40 preheating cycles to a temperature of 39°C in a preheating device. Ten rectangular prismatic specimens (25 × 2 × 2 mm) were prepared for each group (N=180; n=10) and subjected to a three-point bending test for flexural strength and flexural modulus evaluation. Vickers microhardness was assessed on 10 cylindrical specimens from each group (N=180; n=10). Statistical analysis showed that, regardless of the material, the number of heating cycles was not a significant factor and was unable to influence the three mechanical properties tested. However, a significant main effect of the employed material on the marginal means of the three dependent variables was detected.


Sign in / Sign up

Export Citation Format

Share Document