Flexural strength and modulus of a novel ceramic restorative cement intended for posterior restorations as determined by a three-point bending test

2003 ◽  
Vol 61 (2) ◽  
pp. 87-92 ◽  
Author(s):  
Karin Sunnegårdh-Grönberg ◽  
Anne Peutzfeldt ◽  
Jan W. V. van Dijken
2007 ◽  
Vol 14 (04) ◽  
pp. 817-820
Author(s):  
MIN HUANG ◽  
KE-ZHI LI ◽  
HE-JUN LI ◽  
QIAN-GANG FU ◽  
GUO-DONG SUN

SiC coating for carbon/carbon composites was prepared by pack cementation method. The effects of coating process on the microstructure and the mechanical properties of C / C composites were analyzed by SEM and three-point bending test, respectively. As the infiltrated Si improved the interfaces bonding during the coating process, the flexural strength and flexural modulus of SiC -coated carbon/carbon composites were both increased by about 10% than the naked C / C composites. In addition, the mechanism of the change of failure mode of SiC coated C / C composites and naked C / C composites was addressed.


2015 ◽  
Vol 40 (2) ◽  
pp. 181-189 ◽  
Author(s):  
M D'Amario ◽  
F De Angelis ◽  
M Vadini ◽  
N Marchili ◽  
S Mummolo ◽  
...  

SUMMARY The aim of this study was to assess the flexural strength, flexural elastic modulus and Vickers microhardness of three resin composites prepared at room temperature or cured after one or repeated preheating cycles to a temperature of 39°C. Three resin composites were evaluated: Enamel Plus HFO (Micerium), Opallis (FGM), and Ceram X Duo (Dentsply DeTrey). For each trial, one group of specimens of each material was fabricated under ambient laboratory conditions, whereas in the other groups, the composites were cured after 1, 10, 20, 30, or 40 preheating cycles to a temperature of 39°C in a preheating device. Ten rectangular prismatic specimens (25 × 2 × 2 mm) were prepared for each group (N=180; n=10) and subjected to a three-point bending test for flexural strength and flexural modulus evaluation. Vickers microhardness was assessed on 10 cylindrical specimens from each group (N=180; n=10). Statistical analysis showed that, regardless of the material, the number of heating cycles was not a significant factor and was unable to influence the three mechanical properties tested. However, a significant main effect of the employed material on the marginal means of the three dependent variables was detected.


2019 ◽  
Vol 8 (4) ◽  
pp. 4272-4277

In the present work the flexural properties of selected composite plates are examined. The three point bending test happens to be widely acceptable method for the evaluation of flexural properties of the composite plates because of its simple geometry and structure. In this paper the influence of filler material and thickness of laminates under three point bending load on simply supported pins are reported for selected filler material combination. Filler materials used here are Glass fiber epoxy with silicon carbide, Graphite fiber epoxy with silicon carbide and Carbon fiber epoxy with silicon carbide. Investigation is carried out as per ASTM D790 standard. The mechanical properties such as flexural strength, flexural stiffness of the composite plates were investigated and reported. This work broadly points out that the flexural strength is dependent on the thickness of the laminates and amount of the filler material of the laminated composites. It was found that Carbon fiber composite shows the superior flexural strength with 6 wt% of SiC among the specimens under study.


2018 ◽  
Vol 930 ◽  
pp. 43-47
Author(s):  
Cristiane Fonseca de Carvalho ◽  
Cláudio Luis de Melo-Silva ◽  
Tereza Cristina Favieri de Melo-Silva ◽  
Fábio Amaral de Araújo ◽  
Jefferson Fabricio Cardoso Lins

The aim of this study was to analyze the flexural strength of ceramics based on yttria-stabilized zirconia (YTZP) , used in the manufacture of dental prostheses infrastructure before and after aging with cyclic fatigue in moisture. The samples were made by pre-sintered blocks of ZirkonTransluzent (Zirkonzahn GMHB) from YTZP ceramics with and without feldspathic ceramic coating, divided into groups: G1 = YTZP control; G2 = YTZP aged; G3 = YTZP + feldspathic; G4 = YTZP + aged feldspathic. The samples were submitted to a three-point bending test with a speed of 0.5 mm / min. The mean values of the flexural strength values were G1 = 645 MPa (DP ± 124), G2 = 681 MPa (DP ± 129), G3 = 904Mpa (DP ± 157) and G4 = 954Mpa (DP ± 243). The values of groups G1 and G2; G3 and G4 were statistically similar, depending on the presence or absence of coating. Cyclic stresses did not affect the flexural strength of the material


2020 ◽  
Vol 2 (1) ◽  
pp. 45-52
Author(s):  
Ana C. de Assunção Oliveira ◽  
Sandro Griza ◽  
Rafael R. de Moraes ◽  
André L. Faria-e-Silva

Objective:: To investigate the effect of filler content and the time spent before light-curing on mechanical properties of dual-cured cement. Methods:: Experimental dual-cured resin cements were formulated with 60, 65 or 68wt% of filler. The viscosity of experimental cement was measured using a digital viscometer. Bar-shaped specimens (25 x 2 x 2 mm) were fabricated, while the light-curing was started immediately or 5 minutes after the insertion of cement into the mold (n = 7). A three-point bending test was performed and the values of flexural strength and elastic modulus were measured. The Vickers hardness of fractured specimens was measured on the surface of the cement. Data from viscosity were submitted to oneway ANOVA, while the data from mechanical properties were analyzed by two-way ANOVA. All pair-wise comparisons were performed using Tukey’s test (α = 0.05). Results:: The experimental cement with 68wt% of filler showed the highest viscosity and those with 60wt% showed the the lowest viscosity. Irrespective of the time spent before light-curing, the cement with 65wt% of filler presented the highest values of flexural strength and elastic modulus. The addition of 60wt% of filler resulted in the lowest elastic modulus, while 68wt% of filler resulted in lowest flexural strength. Regarding the hardness, the cement with 68wt% of filler showed the highest values, while there was no difference between 60 and 65wt% of filler. Conclusion:: Filler content affected the mechanical properties of the experimental cement and this effect did not depend on the waiting time before the light-curing procedure.


2015 ◽  
Vol 799-800 ◽  
pp. 500-504
Author(s):  
Anirut Chaijaruwanich ◽  
Chanyapat Khamkasem

An aqueous tape casting process was employed to produce hydroxyapatite (HA) sheets. The effects of viscosity of slurry, blade height and speed on flexural strength and density of the sintered HA sheets were studied using central composite design (CCD). The flexural strength and the density were measured using a three-point bending test and Archimedes method, respectively. Results suggested that all parameters and the interaction between viscosity and speed had significant effects on both flexural strength and density. Under the conditions studied, the optimal conditions for the maximum flexural strength and density of the sintered HA sheet were obtained with the viscosity of 1532 mPa.s, the blade height of 3.34 mm and the speed of 6.27 mm/s.


2014 ◽  
Vol 629-630 ◽  
pp. 71-78 ◽  
Author(s):  
Bo Zhou ◽  
Yuichi Uchida

In this study, the influence of fiber orientation on the flexural strength of ultra-high-performance fiber-reinforced concrete (UHPFRC) was examined. To this end, a circular UHPFRC panel measuring φ1,200 × 50 mm was cast from its center, and test specimens measuring 50 × 50 × 200 mm with 10 mm notches for three-point bending tests were cut from it with angles of 0, 30, 60 and 90° between the specimen axis and the radial direction of the panel. After the bending test, fiber orientation on the ruptured surfaces of the specimens was observed. The flexural strengths of the specimens cut at angles of 60, 30 and 0° were 80, 40 and 10% of that for the specimen cut at an angle of 90°. It was also found that the flexural strength of specimens cut from a rectangular panel cast from its center point depended on their original positions and orientation within the panel. Similar fiber orientation characteristics were found in the circular and rectangular panels.


2018 ◽  
Vol 2018 ◽  
pp. 1-5 ◽  
Author(s):  
Hattanas Kumchai ◽  
Patrapan Juntavee ◽  
Arthur F. Sun ◽  
Dan Nathanson

Objective. The purpose of this study was to evaluate the effect of glazing on flexural strength of highly translucent zirconia materials. Materials and Methods. Specimens of three brands of zirconia bars (Prettau Zirconia, Zirkonzahn; inCoris TZI, Sirona; and Zirlux FC, Pentron Ceramics) were prepared and polished according to manufacturers’ instructions. Final specimen dimensions were 20 × 4 × 2 mm. The specimens from each brand were divided into 3 groups (N = 10): control, heat-treated, and glazed. Heat-treated specimens were fired without the application of the glaze material. The glaze material was applied to the glazed specimens before being fired. A three-point bending test (15 mm span) was performed in an Instron universal testing machine (ISO 6872). Data were analyzed by ANOVA and Tukey’s HSD post hoc test (α = 0.05). Results. Two-way ANOVA showed a significant influence of surface treatments on flexural strength of zirconia materials (P≤0.05). There was no significant difference in flexural strength among the different brands of highly translucent zirconia (P≥0.05). Tukey’s HSD post hoc test showed that specimens in the “glazed” group had significantly lower flexural strength than the control and heat-treated groups (P≤0.05). Conclusion. Within the limitations of the study, external glazing decreased the flexural strength of highly translucent zirconia.


Sign in / Sign up

Export Citation Format

Share Document