scholarly journals Effect of Glazing on Flexural Strength of Full-Contour Zirconia

2018 ◽  
Vol 2018 ◽  
pp. 1-5 ◽  
Author(s):  
Hattanas Kumchai ◽  
Patrapan Juntavee ◽  
Arthur F. Sun ◽  
Dan Nathanson

Objective. The purpose of this study was to evaluate the effect of glazing on flexural strength of highly translucent zirconia materials. Materials and Methods. Specimens of three brands of zirconia bars (Prettau Zirconia, Zirkonzahn; inCoris TZI, Sirona; and Zirlux FC, Pentron Ceramics) were prepared and polished according to manufacturers’ instructions. Final specimen dimensions were 20 × 4 × 2 mm. The specimens from each brand were divided into 3 groups (N = 10): control, heat-treated, and glazed. Heat-treated specimens were fired without the application of the glaze material. The glaze material was applied to the glazed specimens before being fired. A three-point bending test (15 mm span) was performed in an Instron universal testing machine (ISO 6872). Data were analyzed by ANOVA and Tukey’s HSD post hoc test (α = 0.05). Results. Two-way ANOVA showed a significant influence of surface treatments on flexural strength of zirconia materials (P≤0.05). There was no significant difference in flexural strength among the different brands of highly translucent zirconia (P≥0.05). Tukey’s HSD post hoc test showed that specimens in the “glazed” group had significantly lower flexural strength than the control and heat-treated groups (P≤0.05). Conclusion. Within the limitations of the study, external glazing decreased the flexural strength of highly translucent zirconia.

2021 ◽  
Vol 11 (5) ◽  
pp. 2129
Author(s):  
Hattanas Kumchai ◽  
Patrapan Juntavee ◽  
Arthur F. Sun ◽  
Dan Nathanson

Background: A variety of veneering options to zirconia frameworks are now available. The purpose of this study is to evaluate the effect of veneer materials, veneering methods, cement materials, and aging on the failure load of bilayered veneer zirconia. Material and methods: Zirconia bars (20 × 4 × 1 mm) were veneered to 2 mm total thickness (n = 10/group). Veneering method groups included: 1. Hand-layered feldsparthic porcelain (VM = Vita VM9, Vident) and fluorapatite glass–ceramic (CR = IPS e.max Ceram, IvoclarVivadent); 2. Pressed feldspathic porcelain (PM = Vita PM9, Vident) and fluorapatite glass–ceramic (ZP = IPS e.max ZirPress, IvoclarVivadent); 3. CAD-/CAM-milled feldspathic ceramic (TF = Vitablocs Triluxe Forte, Vident) and lithium-disilicate glass–ceramic (CAD = IPS e.max CAD, IvoclarVivadent). CAD/CAM veneers were either cemented with resin cements (P = Panavia21, KurarayDental), (R = RelyX Ultimate, 3M ESPE), (M = Multilink Automix, Ivoclar Vivadent) or fused with fusion glass–ceramic (C = CrystalConnect, IvoclarVivadent). A three-point bending test (15 mm span, zirconia on tension side) was performed on Instron universal testing machine (ISO 6872) recording load-to-failure (LTF) of first veneer cracks or catastrophic failure. For group VM, PM, TF-M, TF-C, CAD-M, CAD-C, ten more bars were prepared and aged with cyclic loading (100,000 cycles, 50% LTF) and thermocycling (2000 cycles) before testing. Data were analyzed by ANOVA, Tukey HSD post hoc tests, and t-test (α = 0.05). Zirconia veneered with IPS e.max CAD by fusing had significantly higher failure load compared with zirconia veneered with other veneering materials. (p ≤ 0.05). For cemented veneers, the cement type had a significant effect on the failure load of the veneer zirconia specimens. Specimens cemented with Panavia 21 had a lower resistance to loading than other cements. The aging experiment revealed a significant difference in failure load between non-aged and aged bars in groups VM and PM, but not in the groups with CAD-/CAM-milled veneers. In conclusion, veneer materials, veneering methods, and cement materials have a significant effect on the failure load of bilayered veneer zirconia. CAD-/CAM-milled veneer zirconia is not susceptible to aging performed in this study.


2013 ◽  
Vol 38 (1) ◽  
pp. 33-38 ◽  
Author(s):  
M D'Amario ◽  
S Pacioni ◽  
M Capogreco ◽  
R Gatto ◽  
M Baldi

SUMMARY The aim of this study was to assess the flexural strengths of three resin composites prepared at room temperature or cured after 20 or 40 cycles of preheating to a temperature of 45°C. Three resin composites were evaluated: Enamel Plus HFO (Micerium) (HFO), Enamel Plus HRi (Micerium) (HRi), Opallis + (FGM) (OPA). One group of specimens for each composite was fabricated under ambient laboratory conditions, whereas in the other groups, the composites were cured after 20 or 40 preheating cycles to a temperature of 45°C in a preheating device. Ten specimens were prepared for each group. A three-point bending test was performed using a universal testing machine at a crosshead speed of 0.5 mm/min. Data were analyzed with a two-way analysis of variance (ANOVA) test and a Games-Howell test (α = 0.05). The two-way ANOVA showed that both the material and the number of heating cycles were significant factors, able to influence the flexural strength values (p<0.05). However, there was not a statistically significant interaction (p>0.05). For all three composites flexural strengths were not affected after 20 preheating cycles in comparison with the control groups (0 preheating cycles) but were, however, significantly decreased when 40 prewarming cycles were conducted. The HRi and OPA groups had the highest flexural strengths, with no statistically significant differences among them. HFO presented significantly lower flexural strengths in comparison with HRi.


2008 ◽  
Vol 02 (04) ◽  
pp. 263-268 ◽  
Author(s):  
Mine Betül Uctasli ◽  
Hacer Deniz Arisu ◽  
Lippo VJ Lasilla ◽  
Pekka K Valittu

ABSTRACTObjectives: The purpose of this study was to compare the flexural strength and modulus of two commercial resin composites, at room temperature and 40, 45 and 50�C prior to light polymerization with standard and step-cure protocols.Methods: One nanohybrid (Grandio, VOCO, Cuxhaven, Germany), and microhybrid compositeresin (Filtek Z250, 3M ESPE, St. Paul, MN, USA) were used. The materials were inserted into rectangular moulds at room temperature or preheated to a temperature of 40, 45 or 50°C and cured with standard or step-cure protocols with high intensity halogen (Elipar Highlight, 3M-ESPE, St. Paul, MN, USA). Ten specimens were prepared for each preheating and light curing protocol. A three-point bending test was performed using a universal testing machine at a crosshead speed of 1 mm/min. The data were analyzed by one-way analysis of variance and Tukey’s post hoc tests (P<.05) to examine the effect of curing protocol and preheating. Pearson’s correlation test was used to determine the correlation between tested mechanical properties and preheating.Results: There were no statistically significant difference between tested mechanical properties of the materials, curing protocols and temperature of the materials. No significant correlation was found between preheating and tested mechanical properties.Conclusions: The mechanical properties of the tested materials did not changed by preheating so the tested materials could be preheated because of the other potential clinical advantages like more adaptation to the cavity walls. (Eur J Dent 2008;2:263-268)


2018 ◽  
Vol 21 (3) ◽  
pp. 315
Author(s):  
Ronaldo Lúís Almeida de Carvalho ◽  
Estevão Tomomitsu Kimpara ◽  
Eduardo Bresciani ◽  
Márcia Carneiro Valera ◽  
Renata Marques Melo

<p><strong>Objective: </strong>The aim of the study was to evaluate the effect of aging through different thermocycling protocols on the flexural strength of a feldspathic ceramic. <strong>Material and Methods:</strong> Fifty ceramic bars, Vitablock Mark II (VITA), with dimensions of 18X4X2mm were prepared. The bars were randomly distributed to the groups (n = 10), which were defined according to the number of thermal cycles (TCy): G0 - no TCy; G500 - 500 cycles of TCy; G6000 - 6000 TCy; G10000 - 10000 TCy; G15000 - 15000 TCy. After aging, the specimens were subjected to the three point bending test in a universal testing machine (EMIC DL 1000), under 0.5mm/min speed and loading of 50kgf, until catastrophic failure. A sample of each group was evaluated for topographic morphology under Scanning Electron Microscopy. <strong>Results:</strong> For mechanical testing, the following mean values and standard deviation (MPa) were obtained: G0 (99.78 ± 5.07); G500 (101.64 ± 5.59); G6000 (98.13 ± 4.95); G10000 (91.77 ± 9.68); G15000 (101.51 ± 4.22). An analysis of variance by regression equation (p = 0.387) was performed, demonstrating a weak and non-significant correlation between flexural strength and number of thermal cycles. <strong>Conclusion: </strong>It can be concluded that aging in water solely by different numbers of temperature cycles did not influence on the flexural strength of a feldspathic ceramic.</p><p> </p><p><strong>Keywords</strong></p><p> Material resistance; Aging; Ceramics.</p>


2015 ◽  
Vol 1 (1) ◽  
pp. 102
Author(s):  
Pramudya Aditama ◽  
Siti Sunarintyas ◽  
Widjijono Widjijono

Resin akrilik merupakan bahan yang sering digunakan dalam pembuatan basis gigi tiruan. Kelemahan resin akrilik adalah mudah patah. Salah satu cara untuk mengatasi masalah tersebut adalah dengan menambahkan polyethylene (PE) atau glass fiber. Tujuan dari penelitian ini untuk mengetahui pengaruh jenis dan volumetrik fiber terhadap kekuatan transversal reparasi plat resin akrilik. Penelitian ini menggunakan dua puluh lima plat resin akrilik kuring panas berukuran 65 x 10 x 2,5 mm. Subjek dipreparasi untuk membuat jarak 3 mm dan sudut bevel 45o. Subjek dibagi menjadi 5 kelompok, masingmasing kelompok terdiri dari 5 subjek. Kelompok 1 (kontrol) tanpa penambahan fiber, kelompok II dengan penambahan 3,7% v/v PE fiber, kelompok III dengan penambahan 7,4% v/v PE fiber, kelompok IV dengan penambahan 3,7% v/v E-glass fiber, dan kelompok V dengan penambahan 7,4% v/v E-glass fiber. Seluruh plat direndam dalam air destilasi selama satu hari pada suhu 37oC. Pengujian kekuatan transversal plat resin akrilik dengan menggunakan Universal Testing Machine dan data yang didapat dianalisis menggunakan ANAVA dua jalur dengan tingkat kepercayaan 95%. Rerata kekuatan transversal (MPa) reparasi plat resin akrilik yang diperkuat fiber: 3,7% v/v PE fiber (67,77±3,34); 7,4% v/v PE fiber (80,37±8,42); 3,7% v/v E-glass fiber (96,72±5,43); 7,4% v/v E-glass fiber (109,44±4,98); sedangkan reparasi plat resin yang tidak diperkuat fiber menghasilkan kekuatan transversal 56,27±4,7 MPa. Hasil analisis menggunakanANAVA dua jalur menunjukkan variabel jenis dan volumetrik fiber memberikan pengaruh signifikan (p<0,05), sedangkan interaksi antara jenis dan volumetrik fiber tidak berpengaruh signifikan (p>0,05). Uji post hoc Tukey menunjukkan perbedaan signifikan (p<0,05) untuk seluruh kelompok perlakuan. Penambahan E-glass fiber dalam reparasi plat resinakrilik mampu meningkatkan kekuatan transversal lebih tinggi dibandingkan dengan menggunakan PE fiber. Peningkatan volumetrik fiber dapat meningkatkan kekuatan transversal reparasi plat resin akrilik. Effect Of Type And Volumetric Fiber On Transverse Strength Of Acrylic Resin Plate Repair. Acrylic resin is the most common denture base material. A disadvantage of acrylic resin is that it is easily fractured. One way to resolve this problem is by adding polyethylene (PE) or glass fibers. The purpose of this research is to find out about the effect of type and volumetric fiber on transverse strength of acrylic resin plate repaired. The experiment involved twenty five plates of heat cured acrylic with the dimensions of 65 x 10 x 2.5 mm. The speciments were prepared to create a 3 mm gap and 45° bevel. The subjects were divided into 5 groups; each group consisted of 5. Group I (control) was without fiber reinforcement, group II reinforced with 3.7% v/v PE fiber, group III reinforced with 7.4% v/v PE fiber, group IV reinforced with 3.7% v/v E-glass fiber, and group V reinforced with 7.4% v/v E-glass fiber. All plates were soaked in distilled water for one day at 37° C temperature. The plates were tested for transverse strength with Universal Testing Machine and all data obtained were analyzed with two way ANOVA at 95% confidence level. The mean of transverse strength (MPa) of the acrylic resin plate repair reinforced with fiber: 3.7% v/v PE fiber was (67.77±3.34); 7.4% v/v PE fiber (80.37±8.42); 3.7% v/v E-glass fiber (96.72±5.43); 7.4% v/v E-glass fiber (109.44±4.98); while the transverse strength of the acrylic resin plate with no fiber reinforced was 56.27±4.7 MPa. Two way ANOVA analysis shows that type and volumetric fiber had significant effect (p<0.05), while the interaction between type and volumetric fiber had no significant effect (p>0.05). Tukey post hoc test shows significant difference (p<0.05) for all groups. The addition of E-glass fibers in the acrylic resin plate repaired increased the transverse strength higher than that with PE fibers. The increase in volumetric fibers might improve the transverse strength of the acrylic resin plate repaired.


2010 ◽  
Vol 21 (6) ◽  
pp. 528-532 ◽  
Author(s):  
Ufuk İşerı ◽  
Zeynep Özkurt ◽  
Ender Kazazoğlu ◽  
Davut Küçükoğlu

The surface of zirconia may be damaged during grinding, influencing the mechanical properties of the material. The purpose of this study was to compare the flexural strength of zirconia after different grinding procedures. Twenty bar-type zirconia specimens (21 x 5 x 2 mm) were divided into 4 groups and ground using a high-speed handpiece or a low-speed straight handpiece until the bars were reduced 1 mm using two different grinding times: continuous grinding and short-time grinding (n=5). Control specimens (n=5) were analyzed without grinding. The flexural strengths of the bars were determined by using 3-point bending test in a universal testing machine at a crosshead speed of 0.5 mm/min. The fracture load (N) was recorded, and the data were analyzed statistically by the Kruskal Wallis test at a significance level of 0.05. In the test groups, high-speed handpiece grinding for a short time had produced the highest mean flexural strength (878.5 ± 194.8 MPa), while micromotor continuous grinding produced the lowest mean flexural strength (733.8 ± 94.2 MPa). The control group was the strongest group (928.4 ± 186.5 MPa). However, there was no statistically significant differences among the groups (p>0.05). Within the limitations of the study, there was no difference in flexural strength of zirconia specimens ground with different procedures.


2020 ◽  
Vol 3 (1) ◽  
pp. 17
Author(s):  
Eva Riani ◽  
Octarina Octarina

Introduction: Polymethylmethacrylate (PMMA) and thermoplastic nylon are materials used for making denture bases. Denture users use various methods in order to keep clean their denture. Mouthwash can be an option for cleaning dentures because it is easier to find. Objective: The objective of this research was to investigate the effect of mouthwash containing alcohol as a denture cleanser on flexural strength of polymethylmethacrylate and thermoplastic nylon. Methods: Eighteen samples of polymethylmethacrylate and eighteen samples of thermoplastic nylon with a bar shape (65x10x3 mm) are being used in this research. Each materials are randomly divided into 3 groups (n=6) so there will be six research groups incuded : (A1) PMMA immersed aquades, (A2) PMMA immersed in mouthwash containing alcohol 21.6%, (A3) PMMA immersed in mouthwash containing alcohol 9%, (B1) thermoplastic nylon immersed in aquades, (B2) thermoplastic nylon immersed in mouthwash containing alcohol 21.6%, (B3) thermoplastic nylon immersed in mouthwash containing alcohol 9%. Flexural strength of two materials was tested using universal testing machine (Shimadzu AGS - 5KNX, Japan). All of the data obtained were analyzed using two way Anova test. Result: The mean of flexural strength for group A1 (104.275 ± 15.469 MPa), A2 (103.298 ± 10.387 MPa), A3 (111.626 ± 14.957 MPa), B1 (42.707 ± 4.857 MPa), B2 (38.258 ± 3.246 MPa), and B3 (40.218 ± 1.542 MPa). Result of analysis showed that there was a significant differences between flexural strength of polymethylmethacrylate and thermoplastic nylon (p<0,05), but immersion in mouthwash containing  alcohol showed no significant difference (p>0,05). Conclusion: This research found that flexural strength of polymethylmethacrylate higher than flexural strength of thermoplastic nylon and mouthwash containing alcohol can be an alternative for cleaning a denture because it does not affect the flexural strength of both material significantly.


2014 ◽  
Vol 08 (03) ◽  
pp. 348-352 ◽  
Author(s):  
Huseyin Ertas ◽  
Ebru Kucukyilmaz ◽  
Evren Ok ◽  
Banu Uysal

ABSTRACT Objective: This study was aimed to evaluate and to compare the push-out bond strength of different brands of mineral trioxide aggregate (MTA) with a calcium enriched mixture cement (CEM). Materials and Methods: Fifteen extracted, single-rooted human teeth were used. The middle-third of the roots were sliced perpendicular to the long axis into 1.00 ± 0.05 mm thick serial slices (15 root × 4 slice = 60 specimen). The specimens were then divided into three groups (n = 20). The standardized root discs were filled with white CEM, ProRoot MTA, MTA-Angelus and wrapped in a serum-soaked gauze. After 3 days at relative humidity, the push-out bond strengths were measured with a universal testing machine. Data were analyzed using one-way analysis of variance and post hoc Tukey tests. Results: The mean push-out bond strength value of the ProRoot MTA group (12.7 ± 2.5 MPa) was the highest and statistically significant difference was recorded between ProRoot MTA and other groups (P < 0.001). There was no significant difference between the mean bond strength of CEM cement (4.6 ± 1.1 MPa) and MTA-Angelus (4.5 ± 1.5 MPa) (P = 0.982). Conclusion: The push-out bond strength of MTA was changed with the brands and ProRoot MTA had the highest push-out bond strength.


2016 ◽  
Vol 3 (2) ◽  
pp. 128
Author(s):  
Aprilia Dian Fatimina ◽  
Benni Benyamin ◽  
Helmi Fathurrahman

Background: One of factor that increases the flexural strenght of fiberreinforced acrylic resin is a fiberglass position . Fiberglass is one of type that can be used in dentistry. The aim of this was to determine the influence of position of fiberglass to the flexural strenght of fiber reinforced acrylic resin.Method: This study was in vitro laboratory experimental. Samples was 16plate spesimens (65x10x2.5mm). The study group was divided into 4 group : 3 groups of fiber reinforced acrylic resin were given fiberglass at the upper, middle, and bottom side and 1 control group of resin acrylic without fiberglass. All of groups would be in the flexural strenght test with a three-point bending test using a universal testing machine.Result: Based on One Way ANOVA test showed that there were significantvalue 0.000 (p<0.05), it concluded that there were significant influencebetween all the groups. Based on the LSD Post Hoc test showed that therewere significant value between all of groups with fiberglass reinforced andcontrol group without fiberglass reinforced. Comparisson between the group that given fiberglass in a upper and middle side with the group that given in bottom side showed value of significant difference (p < 0.05).Conclusion: The result of study was concluded that there was an influenceon the position of fiberglass to flexural strenght of fiber reinforced acrylic resin


Author(s):  
Fatin A. Hasanain

Aims: This work aims to assess the flexural strength and depth of cure of Optishade, Omnichroma and Z350 dental resin composites. Study Design: Experimental Laboratory Study. Methods: To assess flexural strength as per ISO standards, 15 samples of each of the three materials were made (n=5) with the dimensions 25x2x2 mm. They were then subjected to 3 point bending testing on a universal testing machine. To assess depth of cure as per ISO standard, 15 cylindrical samples 4 mm in diameter and 6 mm in height were created (n=5) and scraping test was performed. Results: There was a significant difference between the 3 materials in both flexural strength and depth of cure. Z350 had the lowest depth of cure and the highest flexural strength. Conclusion: Within the limitations of this study, all three tested materials fell within the ISO requirementsfor dental resin compositesfor both flexural strength and depth of cure.


Sign in / Sign up

Export Citation Format

Share Document