Heterogeneous Nickel Catalyst Promotes Indole Formation via Dehydrogenative Coupling

Synfacts ◽  
2021 ◽  
Vol 17 (09) ◽  
pp. 0978
2018 ◽  
Vol 16 (2) ◽  
pp. 274-284 ◽  
Author(s):  
Seuli Parua ◽  
Rina Sikari ◽  
Suman Sinha ◽  
Siuli Das ◽  
Gargi Chakraborty ◽  
...  

A general, efficient and environmentally benign, one-step synthesis of substituted quinoline derivatives was achieved by acceptorless dehydrogenative coupling of o-aminobenzylalcohols with ketones and secondary alcohols catalyzed by a cheap, earth abundant and easy to prepare macrocyclic nickel catalyst [Ni(MeTAA)].


2020 ◽  
Author(s):  
Haoyang Yu ◽  
Alyxandra Thiessen ◽  
Md Asjad Hossain ◽  
Marc Julian Kloberg ◽  
Bernhard Rieger ◽  
...  

<div><div><div><p>Covalently bonded organic monolayers play important roles in defining the solution processability, ambient stability, and electronic properties of two-dimensional (2D) materials such as Ge nanosheets (GeNSs); they also hold promise of providing avenues for the fabrication of future generation electronic and optical devices. Functionalization of GeNS normally involves surface moieties linked through covalent Ge−C bonds. In the present contribution we extend the scope of surface linkages to include Si−Ge bonding and present the first demonstration of heteronuclear dehydrocoupling of organosilanes to hydride-terminated GeNSs obtained from the deintercalation and exfoliation of CaGe2. We further exploit this new surface reactivity and demonstrated the preparation of directly bonded silicon quantum dot-Ge nanosheet hybrids.</p></div></div></div>


2020 ◽  
Vol 07 ◽  
Author(s):  
Tanmay Chatterjee ◽  
Nilanjana Mukherjee

Abstract: A natural driving force is always working behind the synthetic organic chemists towards the development of ‘green’ synthetic methodologies for the synthesis of useful classes of organic molecules having potential applications. The majority of the essential classes of organic transformations, including C-C and C-X (X = heteroatom) bond-forming crosscoupling reactions, cross dehydrogenative-coupling (CDC) mostly rely on the requirement of transition-metal catalysts and hazardous organic solvents. Hence, the scope in developing green synthetic strategies by avoiding the use of transitionmetal catalysts and hazardous organic solvents for those important and useful classes of organic transformations is very high. Hence, several attempts are made so far. Water being the most abundant, cheap, and green solvent in the world; numerous synthetic methods have been developed in an aqueous medium. In this review, the development of transitionmetal- free green synthetic strategies for various important classes of organic transformations such as C-C and C-X bondforming cross-coupling, cross dehydrogenative-coupling, and oxidative-coupling in an aqueous media is discussed.


1982 ◽  
Vol 47 (12) ◽  
pp. 3230-3235 ◽  
Author(s):  
Olga Marholová ◽  
Karel Smrček

A hydrophobic porous hydrogen anode was prepared whose electrochemical parameters are comparable with anodes containing a platinum catalyst. For its successful preparation, oxidation of the Raney nickel catalyst with air oxygen or with fluorine from Teflon must be prevented. The electrodes of a geometric surface area up to 450 cm2 were tested in cells and modules filled with 7M-KOH.


1998 ◽  
Vol 63 (11) ◽  
pp. 1945-1953 ◽  
Author(s):  
Jiří Hanika ◽  
Karel Sporka ◽  
Petr Macoun ◽  
Vladimír Kysilka

The activity of ruthenium, palladium, and nickel catalysts for the hydrogenation of 1,2-dihydroacenaphthylene in cyclohexane solution was studied at temperatures up to 180 °C and pressures up to 8 MPa. The GC-MS technique was used to identify most of the perhydroacenaphthylene stereoisomers, whose fractions in the product were found dependent on the nature of the active component of the catalyst. The hydrogenation was fastest on the palladium catalyst (3% Pd/C). The nickel catalyst Ni-NiO/Al2O3, which is sufficiently active also after repeated use, can be recommended for practical application. The activation energy of 1,2-dihydroacenaphthylene hydrogenation using this catalyst is 17 kJ/mol, the reaction order with respect to hydrogen is unity.


2019 ◽  
Vol 55 (82) ◽  
pp. 12384-12387 ◽  
Author(s):  
Yanling Zheng ◽  
Xufeng Nie ◽  
Yang Long ◽  
Li Ji ◽  
Haiyan Fu ◽  
...  

The first synthesis of N-substituted lactams via an acceptorless dehydrogenative coupling of diols with primary amines in one step was enabled by combining Ru3(CO)12 with a hybrid N-heterocyclic carbene–phosphine–phosphine ligand as the catalyst.


2019 ◽  
Vol 123 (37) ◽  
pp. 23007-23013 ◽  
Author(s):  
Feifei Xiang ◽  
Yan Lu ◽  
Zhongping Wang ◽  
Huanxin Ju ◽  
Gianluca Di Filippo ◽  
...  

Science ◽  
2021 ◽  
Vol 372 (6538) ◽  
pp. 175-182
Author(s):  
Hairong Lyu ◽  
Ilia Kevlishvili ◽  
Xuan Yu ◽  
Peng Liu ◽  
Guangbin Dong

Mild methods to cleave the carbon-oxygen (C−O) bond in alkyl ethers could simplify chemical syntheses through the elaboration of these robust, readily available precursors. Here we report that dibromoboranes react with alkyl ethers in the presence of a nickel catalyst and zinc reductant to insert boron into the C−O bond. Subsequent reactivity can effect oxygen-to-nitrogen substitution or one-carbon homologation of cyclic ethers and more broadly streamline preparation of bioactive compounds. Mechanistic studies reveal a cleavage-then-rebound pathway via zinc/nickel tandem catalysis.


Sign in / Sign up

Export Citation Format

Share Document