Emerging Roles of Heparan Sulfate Proteoglycans in Viral Pathogenesis

2021 ◽  
Vol 47 (03) ◽  
pp. 283-294 ◽  
Author(s):  
Raghuram Koganti ◽  
Abdullah Memon ◽  
Deepak Shukla

AbstractHeparan sulfate is a glycosaminoglycan present in nearly all mammalian tissues. Heparan sulfate moieties are attached to the cell surface via heparan sulfate proteoglycans (HSPGs) which are composed of a protein core bound to multiple heparan sulfate chains. HSPGs contribute to the structural integrity of the extracellular matrix and participate in cell signaling by releasing bound cytokines and chemokines once cleaved by an enzyme, heparanase. HSPGs are often exploited by viruses during infection, particularly during attachment and egress. Loss or inhibition of HSPGs initially during infection can yield significant decreases in viral entry and infectivity. In this review, we provide an overview of HSPGs in the lifecycle of multiple viruses, including herpesviruses, human immunodeficiency virus, dengue virus, human papillomavirus, and coronaviruses.

2004 ◽  
Vol 78 (23) ◽  
pp. 12996-13006 ◽  
Author(s):  
Katrien Princen ◽  
Sigrid Hatse ◽  
Kurt Vermeire ◽  
Stefano Aquaro ◽  
Erik De Clercq ◽  
...  

ABSTRACT Here we report that the N-pyridinylmethyl cyclam analog AMD3451 has antiviral activity against a wide variety of R5, R5/X4, and X4 strains of human immunodeficiency virus type 1 (HIV-1) and HIV-2 (50% inhibitory concentration [IC50] ranging from 1.2 to 26.5 μM) in various T-cell lines, CCR5- or CXCR4-transfected cells, peripheral blood mononuclear cells (PBMCs), and monocytes/macrophages. AMD3451 also inhibited R5, R5/X4, and X4 HIV-1 primary clinical isolates in PBMCs (IC50, 1.8 to 7.3 μM). A PCR-based viral entry assay revealed that AMD3451 blocks R5 and X4 HIV-1 infection at the virus entry stage. AMD3451 dose-dependently inhibited the intracellular Ca2+ signaling induced by the CXCR4 ligand CXCL12 in T-lymphocytic cells and in CXCR4-transfected cells, as well as the Ca2+ flux induced by the CCR5 ligands CCL5, CCL3, and CCL4 in CCR5-transfected cells. The compound did not interfere with chemokine-induced Ca2+ signaling through CCR1, CCR2, CCR3, CCR4, CCR6, CCR9, or CXCR3 and did not induce intracellular Ca2+ signaling by itself at concentrations up to 400 μM. In freshly isolated monocytes, AMD3451 inhibited the Ca2+ flux induced by CXCL12 and CCL4 but not that induced by CCL2, CCL3, CCL5, and CCL7. The CXCL12- and CCL3-induced chemotaxis was also dose-dependently inhibited by AMD3451. Furthermore, AMD3451 inhibited CXCL12- and CCL3L1-induced endocytosis in CXCR4- and CCR5-transfected cells. AMD3451, in contrast to the specific CXCR4 antagonist AMD3100, did not inhibit but enhanced the binding of several anti-CXCR4 monoclonal antibodies (such as clone 12G5) at the cell surface, pointing to a different interaction with CXCR4. AMD3451 is the first low-molecular-weight anti-HIV agent with selective HIV coreceptor, CCR5 and CXCR4, interaction.


1998 ◽  
Vol 72 (11) ◽  
pp. 9337-9344 ◽  
Author(s):  
Yi-jun Zhang ◽  
Tatjana Dragic ◽  
Yunzhen Cao ◽  
Leondios Kostrikis ◽  
Douglas S. Kwon ◽  
...  

ABSTRACT We have tested a panel of pediatric and adult human immunodeficiency virus type 1 (HIV-1) primary isolates for the ability to employ the following proteins as coreceptors during viral entry: CCR1, CCR2b, CCR3, CCR4, CCR5, CCR8, CXCR4, Bonzo, BOB, GPR1, V28, US28, and APJ. Most non-syncytium-inducing isolates could utilize only CCR5. All syncytium-inducing viruses used CXCR4, some also employed V28, and one (DH123) used CCR8 and APJ as well. A longitudinal series of HIV-1 subtype B isolates from an infected infant and its mother utilized Bonzo efficiently, as well as CCR5. The maternal isolates, which were syncytium inducing, also used CXCR4, CCR8, V28, and APJ.


2002 ◽  
Vol 115 (10) ◽  
pp. 2041-2051 ◽  
Author(s):  
Juan Pablo Henriquez ◽  
Juan Carlos Casar ◽  
Luis Fuentealba ◽  
David J. Carey ◽  
Enrique Brandan

Heparan sulfate chains of proteoglycans bind to and regulate the function of a wide variety of ligands. In myoblasts, heparan sulfate proteoglycans modulate basic fibroblast growth factor activity and regulate skeletal muscle differentiation. The aim of this study was to identify endogenous extracellular ligands for muscle cell heparan sulfate proteoglycans.[35S]heparin ligand blot assays identified a 33/30 kDa doublet(p33/30) in detergent/high ionic strength extracts and heparin soluble fractions obtained from intact C2C12 myoblasts. p33/30 is localized on the plasma membrane or in the extracellular matrix where its level increases during muscle differentiation. Heparin-agarose-purified p33/30 was identified as histone H1. In vitro binding assays showed that histone H1 binds specifically to perlecan. Immunofluorescence microscopy showed that an extracellular pool of histone H1 colocalizes with perlecan in the extracellular matrix of myotube cultures and in regenerating skeletal muscle. Furthermore, histone H1 incorporated into the extracellular matrix strongly stimulated myoblast proliferation via a heparan-sulfate-dependent mechanism.These results indicate that histone H1 is present in the extracellular matrix of skeletal muscle cells, where it interacts specifically with perlecan and exerts a strong proliferative effect on myoblasts, suggesting a role for histone H1 during skeletal muscle regeneration.


Blood ◽  
1997 ◽  
Vol 89 (8) ◽  
pp. 2670-2678 ◽  
Author(s):  
Marta Baiocchi ◽  
Eleonora Olivetta ◽  
Cristiana Chelucci ◽  
Anna Claudia Santarcangelo ◽  
Roberta Bona ◽  
...  

Abstract Recent findings have shown that the expression of the seven trans-membrane G-protein–coupled CXCR4 (the receptor for the stromal cell-derived factor [SDF]-1 chemokine) is necessary for the entry of T-lymphotropic human immunodeficiency virus (HIV) strains, acting as a coreceptor of the CD4 molecule. In the human system, the role of CXCR4 in HIV infection has been determined through env-mediated cell fusion assays and confirmed by blocking viral entry in CD4+/CXCR4+ cells by SDF-1 pretreatment. We observed that the human megakaryoblastic CD4+ UT-7 cell line fails to express CXCR4 RNA and is fully resistant to HIV entry. Transfection of an expression vector containing the CXCR4 c-DNA rendered UT-7 cells readily infectable by different T-lymphotropic syncytium-inducing HIV-1 and HIV-2 isolates. Interestingly, HIV-1 infection of CXCR4 expressing UT-7 cells (named UT-7/fus) induces the formation of polynucleated cells through a process highly reminiscent of megakaryocytic differentiation and maturation. On the contrary, no morphologic changes were observed in HIV-2–infected UT-7/fus cells. These findings further strengthen the role of CXCR4 as a molecule necessary for the replication of T-lymphotropic HIV-1 and HIV-2 isolates and provide a useful model to study the functional role of CD4 coreceptors in HIV infection.


1996 ◽  
Vol 29 (2-3) ◽  
pp. 209-219 ◽  
Author(s):  
Karen De Vreese ◽  
Diane Reymen ◽  
Philip Griffin ◽  
Alexander Steinkasserer ◽  
Gudrun Werner ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document