Mitochondrial Dysfunction in Diabetic Cardiomyopathy: Effect of Mesenchymal Stem Cell with PPAR-γ Agonist or Exendin-4

2017 ◽  
Vol 126 (01) ◽  
pp. 27-38 ◽  
Author(s):  
Mohamed Wassef ◽  
Ola Tork ◽  
Laila Rashed ◽  
Walaa Ibrahim ◽  
Heba Morsi ◽  
...  

AbstractTherapy targeting mitochondria may provide novel ways to treat diabetes and its complications. Bone marrow-derived mesenchymal stem cells (MSCs), the peroxisome proliferator-activated receptor gamma (PPAR-γ) agonists and exendin-4; an analog of glucagon-like peptide-1 have shown cardioprotective properties in many cardiac injury models. So, we evaluated their effects in diabetic cardiomyopathy (DCM) in relation to mitochondrial dysfunction. This work included seven groups of adult male albino rats: the control group, the non-treated diabetic group, and the treated diabetic groups: one group was treated with MSCs only, the second with pioglitazone only, the third with MSCs and pioglitazone, the forth with exendin-4 only and the fifth with MSCs and exendin-4. All treatments were started after 6 weeks from induction of diabetes and continued for the next 4 weeks. Blood samples were collected for assessment of glucose, insulin, and cardiac enzymes. Hearts were removed and used for isolated heart studies, and gene expression of: myocyte enhancer factor-2 (Mef2), peroxisome proliferator-activated receptor gamma coactivator1-alpha (PGC1α), nuclear factor kappa B (NFKB) and autophagic markers: light chain 3 (LC3) and beclin by real-time reverse transcription-polymerase chain reaction. The cardiac mitochondrial protein levels of cardiolipin and uncoupler protein 2 (UCP2) were assessed by ELISA and western blot technique, respectively. Treated groups showed significant improvement in left ventricular function associated with improvement in the cardiac injury and myopathic markers compared to the non treated diabetic group. NFKB was down-regulated while cardiolipin, PGC1α, LC.3 and beclin were up-regulated in all treated groups. These data suggest that the cardioprotective effects of MSCs, exendin-4 or pioglitazone based on their ability to improve mitochondrial functions through targeting inflammatory and autophagy signaling. The co- administration of pioglitazone or exendin-4 with MSCs showed significant superior improvement compared with MSCs alone, indicating the ability to use them in supporting cardioprotective effects of MSCs.

PPAR Research ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Jie Yan ◽  
Si-Chi Xu ◽  
Chun-Yan Kong ◽  
Xiao-Yang Zhou ◽  
Zhou-Yan Bian ◽  
...  

Background. Oxidative stress, inflammation and cardiac apoptosis were closely involved in doxorubicin (DOX)-induced cardiac injury. Piperine has been reported to suppress inflammatory response and pyroptosis in macrophages. However, whether piperine could protect the mice against DOX-related cardiac injury remain unclear. This study aimed to investigate whether piperine inhibited DOX-related cardiac injury in mice. Methods. To induce DOX-related acute cardiac injury, mice in DOX group were intraperitoneally injected with a single dose of DOX (15 mg/kg). To investigate the protective effects of piperine, mice were orally treated for 3 weeks with piperine (50 mg/kg, 18:00 every day) beginning two weeks before DOX injection. Results. Piperine treatment significantly alleviated DOX-induced cardiac injury, and improved cardiac function. Piperine also reduced myocardial oxidative stress, inflammation and apoptosis in mice with DOX injection. Piperine also improved cell viability, and reduced oxidative damage and inflammatory factors in cardiomyocytes. We also found that piperine activated peroxisome proliferator-activated receptor-γ (PPAR-γ), and the protective effects of piperine were abolished by the treatment of the PPAR-γ antagonist in vivo and in vitro. Conclusions. Piperine could suppress DOX-related cardiac injury via activation of PPAR-γ in mice.


2005 ◽  
Vol 288 (1) ◽  
pp. H77-H82 ◽  
Author(s):  
Shintaro Nemoto ◽  
Peter Razeghi ◽  
Masakuni Ishiyama ◽  
Gilberto De Freitas ◽  
Heinrich Taegtmeyer ◽  
...  

Previously we reported that the beneficial effects of β-adrenergic blockade in chronic mitral regurgitation (MR) were in part due to induction of bradycardia, which obviously affects myocardial energy requirements. From this observation we hypothesized that part of the pathophysiology of MR may involve faulty energy substrate utilization, which in turn might lead to potentially harmful lipid accumulation as observed in other models of heart failure. To explore this hypothesis, we measured triglyceride accumulation in the myocardia of dogs with chronic MR and then attempted to enhance myocardial metabolism by chronic administration of the peroxisome proliferator-activated receptor (PPAR)-γ agonist rosiglitazone. Cardiac tissues were obtained from three groups of dogs that included control animals, dogs with MR for 3 mo without treatment, and dogs with MR for 6 mo that were treated with rosiglitazone (8 mg/day) for the last 3 mo of observation. Hemodynamics and contractile function (end-systolic stress-strain relationship, as measured by K index) were assessed at baseline, 3 mo of MR, and 6 mo of MR (3 mo of the treatment). Lipid accumulation in MR (as indicated by oil red O staining score and TLC analysis) was marked and showed an inverse correlation with the left ventricular (LV) contractility. LV contractility was significantly restored after PPAR therapy (K index: therapy, 3.01 ± 0.11*; 3 mo MR, 2.12 ± 0.34; baseline, 4.01 ± 0.29; ANOVA, P = 0.038; * P < 0.05 vs. 3 mo of MR). At the same time, therapy resulted in a marked reduction of intramyocyte lipid. We conclude that 1) chronic MR leads to intramyocyte myocardial lipid accumulation and contractile dysfunction, and 2) administration of the PPAR-γ agonist rosiglitazone ameliorates MR-induced LV dysfunction accompanied by a decline in lipid content.


PPAR Research ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Wen-Bin Zhang ◽  
Yong-Fa Zheng ◽  
Yao-Gui Wu

Background. The clinical usefulness of doxorubicin (DOX), an anthracycline with antitumor activity, is limited by its cardiotoxicity. Oxidative stress and myocardial apoptosis were closely associated with DOX-induced cardiac dysfunction. It has been reported that microRNA-128-3p (miR-128-3p) was involved into the regulation of redox balance. However, the role of miR-128-3p in DOX-related cardiac injury remains not yet understood. The aim of this study was to investigate the biological effect of miR-128-3p in DOX-induced cardiotoxicity. Methods. To induce DOX-related acute cardiac injury, mice were subjected to a single injection of DOX. Inhibition of myocardial miR-128-3p was achieved by an adeno-associated virus (AAV9) system carrying a miR-128-3p sponge. Results. The data in our study indicated that miR-128-3p was upregulated in DOX-treated hearts and cardiomyocytes. Inhibition of miR-128-3p attenuated DOX-related cardiac injury and improved cardiac function in mice. Moreover, miR-128-3p inhibition could suppress myocardial inflammatory response, oxidative damage, and cell apoptotic death in DOX-treated mice. Further analysis showed that miR-128-3p could directly target peroxisome proliferator-activated receptor γ (PPAR-γ) and decrease PPAR-γ expression. Moreover, the protective effects provided by miR-128-3p inhibition were abolished by a PPAR-γ antagonist in vivo and in vitro. Conclusions. miR-128-3p inhibition attenuated DOX-related acute cardiac injury via the regulation of PPAR-γ in mice.


2021 ◽  
Vol 22 (2) ◽  
pp. 934
Author(s):  
Woon-Man Kung ◽  
Muh-Shi Lin

Proinflammatory response and mitochondrial dysfunction are related to the pathogenesis of neurodegenerative diseases (NDs). Nuclear factor κB (NFκB) activation has been shown to exaggerate proinflammation and mitochondrial dysfunction, which underlies NDs. CDGSH iron-sulfur domain 2 (CISD2) has been shown to be associated with peroxisome proliferator-activated receptor-β (PPAR-β) to compete for NFκB and antagonize the two aforementioned NFκB-provoked pathogeneses. Therefore, CISD2-based strategies hold promise in the treatment of NDs. CISD2 protein belongs to the human NEET protein family and is encoded by the CISD2 gene (located at 4q24 in humans). In CISD2, the [2Fe-2S] cluster, through coordinates of 3-cysteine-1-histidine on the CDGSH domain, acts as a homeostasis regulator under environmental stress through the transfer of electrons or iron-sulfur clusters. Here, we have summarized the features of CISD2 in genetics and clinics, briefly outlined the role of CISD2 as a key physiological regulator, and presented modalities to increase CISD2 activity, including biomedical engineering or pharmacological management. Strategies to increase CISD2 activity can be beneficial for the prevention of inflammation and mitochondrial dysfunction, and thus, they can be applied in the management of NDs.


Author(s):  
Serena Stopponi ◽  
Yannick Fotio ◽  
Carlo Cifani ◽  
Hongwu Li ◽  
Carolina L Haass-Koffler ◽  
...  

Abstract Background and aims Andrographis paniculata is an annual herbaceous plant which belongs to the Acanthaceae family. Extracts from this plant have shown hepatoprotective, anti-inflammatory and antidiabetic properties, at least in part, through activation of the nuclear receptor Peroxisome Proliferator-Activated Receptor-gamma (PPAR γ). Recent evidence has demonstrated that activation of PPARγ reduces alcohol drinking and seeking in Marchigian Sardinian (msP) alcohol-preferring rats. Methods The present study evaluated whether A. paniculata reduces alcohol drinking and relapse in msP rats by activating PPARγ. Results Oral administration of an A. paniculata dried extract (0, 15, 150 mg/kg) lowered voluntary alcohol consumption in a dose-dependent manner and achieved ~65% reduction at the dose of 450 mg/kg. Water and food consumption were not affected by the treatment. Administration of Andrographolide (5 and 10 mg/kg), the main active component of A. paniculata, also reduced alcohol drinking. This effect was suppressed by the selective PPARγ antagonist GW9662. Subsequently, we showed that oral administration of A. paniculata (0, 150, 450 mg/kg) prevented yohimbine- but not cues-induced reinstatement of alcohol seeking. Conclusions Results point to A. paniculata-mediated PPARγactivation as a possible therapeutic strategy to treat alcohol use disorder.


Nutrients ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 261
Author(s):  
Lieu Tran ◽  
Gerd Bobe ◽  
Gayatri Arani ◽  
Yang Zhang ◽  
Zhenzhen Zhang ◽  
...  

Peroxisome proliferator-activated receptor-γ2 gene Pro12Ala allele polymorphism (PPARG2 Pro12Ala; rs1801282) has been linked to both cancer risk and dietary factors. We conducted the first systematic literature review of studies published before December 2020 using the PubMed database to summarize the current evidence on whether dietary factors for cancer may differ by individuals carrying C (common) and/or G (minor) alleles of the PPARG2 Pro12Ala allele polymorphism. The inclusion criteria were observational studies that investigated the association between food or nutrient consumption and risk of incident cancer stratified by PPARG2 Pro12Ala allele polymorphism. From 3815 identified abstracts, nine articles (18,268 participants and 4780 cancer cases) covering three cancer sites (i.e., colon/rectum, prostate, and breast) were included. CG/GG allele carriers were more impacted by dietary factors than CC allele carriers. High levels of protective factors (e.g., carotenoids and prudent dietary patterns) were associated with a lower cancer risk, and high levels of risk factors (e.g., alcohol and refined grains) were associated with a higher cancer risk. In contrast, both CG/GG and CC allele carriers were similarly impacted by dietary fats, well-known PPAR-γ agonists. These findings highlight the complex relation between PPARG2 Pro12Ala allele polymorphism, dietary factors, and cancer risk, which warrant further investigation.


Sign in / Sign up

Export Citation Format

Share Document