Correction of Pelvic Tilt and Pelvic Rotation in Cup Measurement after THA – An Experimental Study

Author(s):  
Timo Julian Schwarz ◽  
Markus Weber ◽  
Christian Dornia ◽  
Michael Worlicek ◽  
Tobias Renkawitz ◽  
...  

Purpose Accurate assessment of cup orientation on postoperative pelvic radiographs is essential for evaluating outcome after THA. Here, we present a novel method for correcting measurement inaccuracies due to pelvic tilt and rotation. Method In an experimental setting, a cup was implanted into a dummy pelvis, and its final position was verified via CT. To show the effect of pelvic tilt and rotation on cup position, the dummy was fixed to a rack to achieve a tilt between + 15° anterior and -15° posterior and 0° to 20° rotation to the contralateral side. According to Murray’s definitions of anteversion and inclination, we created a novel corrective procedure to measure cup position in the pelvic reference frame (anterior pelvic plane) to compensate measurement errors due to pelvic tilt and rotation. Results The cup anteversion measured on CT was 23.3°; on AP pelvic radiographs, however, variations in pelvic tilt (± 15°) resulted in anteversion angles between 11.0° and 36.2° (mean error 8.3°± 3.9°). The cup inclination was 34.1° on CT and ranged between 31.0° and 38.7° (m. e. 2.3°± 1.5°) on radiographs. Pelvic rotation between 0° and 20° showed high variation in radiographic anteversion (21.2°–31.2°, m. e. 6.0°± 3.1°) and inclination (34.1°–27.2°, m. e. 3.4°± 2.5°). Our novel correction algorithm for pelvic tilt reduced the mean error in anteversion measurements to 0.6°± 0.2° and in inclination measurements to 0.7° (SD± 0.2). Similarly, the mean error due to pelvic rotation was reduced to 0.4°± 0.4° for anteversion and to 1.3°± 0.8 for inclination. Conclusion Pelvic tilt and pelvic rotation may lead to misinterpretation of cup position on anteroposterior pelvic radiographs. Mathematical correction concepts have the potential to significantly reduce these errors, and could be implemented in future radiological software tools. Key Points  Citation Format

2020 ◽  
pp. 219256822095697
Author(s):  
Nathan J. Lee ◽  
Zeeshan M. Sardar ◽  
Venkat Boddapati ◽  
Justin Mathew ◽  
Meghan Cerpa ◽  
...  

Study Design: Consecutively collected cases. Objective: To determine if a machine-learning (ML) program can accurately predict the postoperative thoracic kyphosis through the uninstrumented thoracic spine and pelvic compensation in patients who undergo fusion from the lower thoracic spine (T10 or T11) to the sacrum. Methods: From 2015 to 2019, a consecutive series of adult (≥18 years old) patients with adult spinal deformity underwent corrective spinal fusion from the lower thoracic spine (T10 or T11) to the sacrum. Deidentified data was processed by a ML system-based platform to predict the postoperative thoracic kyphosis (TK) and pelvic tilt (PT) for each patient. To validate the ML model, the postoperative TK (T4-T12, instrumented thoracic, and uninstrumented thoracic) and the pelvic tilt were compared against the predicted values. Results: A total of 20 adult patients with a minimum 6-month follow-up (mean: 22.4 ± 11.3 months) were included in this study. No significant differences were observed for TK (predicted 37.6° vs postoperative 38.3°, P = .847), uninstrumented TK (predicted 33.9° vs postoperative 29.8°, P = .188), and PT (predicted 23.4° vs postoperative 22.7°, P = .754). The predicted PT and the TK of the uninstrumented thoracic spine correlated well with postoperative values (uninstrumented TK: R 2 = 0.764, P < .001; PT: R 2 = 0.868, P < .001). The mean error with which kyphosis through the uninstrumented thoracic spine can be measured was 4.8° ± 4.0°. The mean error for predicting PT was 2.5° ± 1.7°. Conclusion: ML algorithms can accurately predict the spinopelvic compensation after spinal fusion from the lower thoracic spine to the sacrum. These findings suggest that surgeons may be able to leverage this technology to reduce the risk of proximal junctional kyphosis in this population.


Cureus ◽  
2019 ◽  
Author(s):  
Jeffrey M Muir ◽  
John Vincent ◽  
Joseph Schipper ◽  
Varsha D Gobin ◽  
Meinusha Govindarajan ◽  
...  

2018 ◽  
Vol 934 (4) ◽  
pp. 59-62
Author(s):  
V.I. Salnikov

The question of calculating the limiting values of residuals in geodesic constructions is considered in the case when the limiting value for measurement errors is assumed equal to 3m, ie ∆рred = 3m, where m is the mean square error of the measurement. Larger errors are rejected. At present, the limiting value for the residual is calculated by the formula 3m√n, where n is the number of measurements. The article draws attention to two contradictions between theory and practice arising from the use of this formula. First, the formula is derived from the classical law of the normal Gaussian distribution, and it is applied to the truncated law of the normal distribution. And, secondly, as shown in [1], when ∆рred = 2m, the sums of errors naturally take the value equal to ?pred, after which the number of errors in the sum starts anew. This article establishes its validity for ∆рred = 3m. A table of comparative values of the tolerances valid and recommended for more stringent ones is given. The article gives a graph of applied and recommended tolerances for ∆рred = 3m.


1979 ◽  
Vol 44 (2) ◽  
pp. 295-306 ◽  
Author(s):  
Ivan Cibulka ◽  
Vladimír Hynek ◽  
Robert Holub ◽  
Jiří Pick

A digital vibrating-tube densimeter was constructed for measuring the density of liquids at several temperatures. The underlying principle of the apparatus is the measurement of the period of eigen-vibrations of a V-shaped tube; the second power of the period of the vibrations is proportional to the density of the liquid in the tube. The temperature of the measuring system is controlled by an electronic regulator. The mean error in the density measurement is approximately ±1 . 10-5 g cm-3 at 25 °C and ±2 . 10-5 g cm-3 at 40 °C. The apparatus was used for an indirect measurement of the excess volume, tested with the benzene-cyclohexane system and further used for determining the excess volume of the benzene-methanol, benzene-acetonitrile and methanol-acetonitrile systems at 25 and 40 °C.


Author(s):  
Elizabeth Vogel ◽  
Thomas Leaver ◽  
Fiona Wall ◽  
Ben Johnson ◽  
Michael Uglow ◽  
...  

Abstract Objective There are no data on the effect of X-Ray irradiation to the vulnerable pelvic organs of babies during DDH follow-up. This study aims to calculate, for the first time, the radiation exposure to infants during follow-up for DDH harness treatment, and thus quantify the lifetime risk of malignancy. Methods Patients who had completed 5 years’ follow-up following successful Pavlik harness treatment were identified from the hospital DDH database. The radiation dose was extracted from the Computerised Radiology Information System database for every radiograph of every patient. The effective dose (ED) was calculated using conversion coefficients for age, sex and body region irradiated. Cumulative ED was compared to Health Protection Agency standards to calculate lifetime risk of malignancy from the radiographs. Results All radiographs of 40 infants, successfully treated in Pavlik harness for DDH, were assessed. The mean number of AP pelvis radiographs was 7.00 (range: 6–9, mode: 7). The mean cumulative ED was 0.25 mSv (Range: 0.11–0.46, SD: 0.07). This is far lower than the annual ‘safe’ limit for healthcare workers of 20 mSv and is categorised as “Very Low Risk”. Conclusion Clinicians involved in the treatment DDH can be re-assured that the cumulative radiation exposure from pelvic radiographs following Pavlik harness treatment is “Very Low Risk”. Whilst being mindful of any radiation exposure in children, this study provides a scientific answer that help addresses parental concerns.


2011 ◽  
Vol 1314 ◽  
Author(s):  
Johannes de Boor ◽  
Volker Schmidt

AbstractWe have recently presented a novel method for a complete thermoelectric characterization [J. de Boor, V. Schmidt. Adv. Mater. 22:4303, (2010)]. This method is based on the well-known electrical van der Pauw method and allows measurement of the electrical and thermal conductivity, the Seebeck coefficient and the thermoelectric figure of merit. After a short review of this method we will discuss the systematic measurement errors of the method. It turns out that radiative heat loss can affect the thermal conductivity measurement significantly. We will give a simple estimation for the relative error due to radiation losses and discuss error minimizing strategies.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2525
Author(s):  
Kamil Krasuski ◽  
Damian Wierzbicki

In the field of air navigation, there is a constant pursuit for new navigation solutions for precise GNSS (Global Navigation Satellite System) positioning of aircraft. This study aims to present the results of research on the development of a new method for improving the performance of PPP (Precise Point Positioning) positioning in the GPS (Global Positioning System) and GLONASS (Globalnaja Nawigacionnaja Sputnikovaya Sistema) systems for air navigation. The research method is based on a linear combination of individual position solutions from the GPS and GLONASS systems. The paper shows a computational scheme based on the linear combination for geocentric XYZ coordinates of an aircraft. The algorithm of the new research method uses the weighted mean method to determine the resultant aircraft position. The research method was tested on GPS and GLONASS kinematic data from an airborne experiment carried out with a Seneca Piper PA34-200T aircraft at the Mielec airport. A dual-frequency dual-system GPS/GLONASS receiver was placed on-board the plane, which made it possible to record GNSS observations, which were then used to calculate the aircraft’s position in CSRS-PPP software. The calculated XYZ position coordinates from the CSRS-PPP software were then used in the weighted mean model’s developed optimization algorithm. The measurement weights are a function of the number of GPS and GLONASS satellites and the inverse of the mean error square. The obtained coordinates of aircraft from the research model were verified with the RTK-OTF solution. As a result of the research, the presented solution’s accuracy is better by 11–87% for the model with a weighting scheme as a function of the inverse of the mean error square. Moreover, using the XYZ position from the RTKLIB program, the research method’s accuracy increases from 45% to 82% for the model with a weighting scheme as a function of the inverse of the square of mean error. The developed method demonstrates high efficiency for improving the performance of GPS and GLONASS solutions for the PPP measurement technology in air navigation.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Hussein Soffar ◽  
Mohamed F. Alsawy

Abstract Background Neuronavigation is a very beneficial tool in modern neurosurgical practice. However, the neuronavigation is not available in most of the hospitals in our country raising the question about its importance in localizing the calvarial extra-axial lesions and to what extent it is safe to operate without it. Methods We studied twenty patients with calvarial extra-axial lesions who underwent surgical interventions. All lesions were preoperatively located with both neuronavigation and the usual linear measurements. Both methods were compared regarding the time consumed to localize the tumor and the accuracy of each method to anticipate the actual center of the tumor. Results The mean error of distance between the planned center of the tumor and the actual was 6.50 ± 1.762 mm in conventional method, whereas the error was 3.85 ± 1.309 mm in IGS method. Much more time was consumed during the neuronavigation method including booting, registration, and positioning. A statistically significant difference was found between the mean time passed in the conventional method and IGS method (2.05 ± 0.826, 24.90 ± 1.334, respectively), P-value < 0.001. Conclusion In the setting of limited resources, the linear measurement localization method seems to have an accepted accuracy in the localization of calvarial extra-axial lesions and it saves more time than neuronavigation method.


2016 ◽  
Vol 11 (2) ◽  
pp. 235-239 ◽  
Author(s):  
Kristie-Lee Taylor ◽  
Will G. Hopkins ◽  
Dale W. Chapman ◽  
John B. Cronin

The purpose of this study was to calculate the coefficients of variation in jump performance for individual participants in multiple trials over time to determine the extent to which there are real differences in the error of measurement between participants. The effect of training phase on measurement error was also investigated. Six subjects participated in a resistance-training intervention for 12 wk with mean power from a countermovement jump measured 6 d/wk. Using a mixed-model meta-analysis, differences between subjects, within-subject changes between training phases, and the mean error values during different phases of training were examined. Small, substantial factor differences of 1.11 were observed between subjects; however, the finding was unclear based on the width of the confidence limits. The mean error was clearly higher during overload training than baseline training, by a factor of ×/÷ 1.3 (confidence limits 1.0–1.6). The random factor representing the interaction between subjects and training phases revealed further substantial differences of ×/÷ 1.2 (1.1–1.3), indicating that on average, the error of measurement in some subjects changes more than in others when overload training is introduced. The results from this study provide the first indication that within-subject variability in performance is substantially different between training phases and, possibly, different between individuals. The implications of these findings for monitoring individuals and estimating sample size are discussed.


2014 ◽  
Vol 26 (01) ◽  
pp. 1450002 ◽  
Author(s):  
Hanguang Xiao

The early detection and intervention of artery stenosis is very important to reduce the mortality of cardiovascular disease. A novel method for predicting artery stenosis was proposed by using the input impedance of the systemic arterial tree and support vector machine (SVM). Based on the built transmission line model of a 55-segment systemic arterial tree, the input impedance of the arterial tree was calculated by using a recursive algorithm. A sample database of the input impedance was established by specifying the different positions and degrees of artery stenosis. A SVM prediction model was trained by using the sample database. 10-fold cross-validation was used to evaluate the performance of the SVM. The effects of stenosis position and degree on the accuracy of the prediction were discussed. The results showed that the mean specificity, sensitivity and overall accuracy of the SVM are 80.2%, 98.2% and 89.2%, respectively, for the 50% threshold of stenosis degree. Increasing the threshold of the stenosis degree from 10% to 90% increases the overall accuracy from 82.2% to 97.4%. Increasing the distance of the stenosis artery from the heart gradually decreases the overall accuracy from 97.1% to 58%. The deterioration of the stenosis degree to 90% increases the prediction accuracy of the SVM to more than 90% for the stenosis of peripheral artery. The simulation demonstrated theoretically the feasibility of the proposed method for predicting artery stenosis via the input impedance of the systemic arterial tree and SVM.


Sign in / Sign up

Export Citation Format

Share Document