Measurements of the excess volume of benzene-methanol, benzene-acetonitrile and methanol-acetonitrile mixtures by a vibrating-tube densimeter

1979 ◽  
Vol 44 (2) ◽  
pp. 295-306 ◽  
Author(s):  
Ivan Cibulka ◽  
Vladimír Hynek ◽  
Robert Holub ◽  
Jiří Pick

A digital vibrating-tube densimeter was constructed for measuring the density of liquids at several temperatures. The underlying principle of the apparatus is the measurement of the period of eigen-vibrations of a V-shaped tube; the second power of the period of the vibrations is proportional to the density of the liquid in the tube. The temperature of the measuring system is controlled by an electronic regulator. The mean error in the density measurement is approximately ±1 . 10-5 g cm-3 at 25 °C and ±2 . 10-5 g cm-3 at 40 °C. The apparatus was used for an indirect measurement of the excess volume, tested with the benzene-cyclohexane system and further used for determining the excess volume of the benzene-methanol, benzene-acetonitrile and methanol-acetonitrile systems at 25 and 40 °C.

1982 ◽  
Vol 47 (5) ◽  
pp. 1414-1419 ◽  
Author(s):  
Ivan Cibulka

Several methods for estimating the excess volume and density of ternary liquid mixtures of non-electrolytes from binary data are tested using 27 sets of data from the literature. The mean error of the excess volume estimation is lower than 0.1 cm3 mol-1. The use of the tested methods for estimating the density of ternary mixtures results in a significant reduction of the error compared to the stimation when the mixture is considered to be ideal. In decisive majority of the data sets, the maximum error in the density estimation is lower than 0.1%.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2525
Author(s):  
Kamil Krasuski ◽  
Damian Wierzbicki

In the field of air navigation, there is a constant pursuit for new navigation solutions for precise GNSS (Global Navigation Satellite System) positioning of aircraft. This study aims to present the results of research on the development of a new method for improving the performance of PPP (Precise Point Positioning) positioning in the GPS (Global Positioning System) and GLONASS (Globalnaja Nawigacionnaja Sputnikovaya Sistema) systems for air navigation. The research method is based on a linear combination of individual position solutions from the GPS and GLONASS systems. The paper shows a computational scheme based on the linear combination for geocentric XYZ coordinates of an aircraft. The algorithm of the new research method uses the weighted mean method to determine the resultant aircraft position. The research method was tested on GPS and GLONASS kinematic data from an airborne experiment carried out with a Seneca Piper PA34-200T aircraft at the Mielec airport. A dual-frequency dual-system GPS/GLONASS receiver was placed on-board the plane, which made it possible to record GNSS observations, which were then used to calculate the aircraft’s position in CSRS-PPP software. The calculated XYZ position coordinates from the CSRS-PPP software were then used in the weighted mean model’s developed optimization algorithm. The measurement weights are a function of the number of GPS and GLONASS satellites and the inverse of the mean error square. The obtained coordinates of aircraft from the research model were verified with the RTK-OTF solution. As a result of the research, the presented solution’s accuracy is better by 11–87% for the model with a weighting scheme as a function of the inverse of the mean error square. Moreover, using the XYZ position from the RTKLIB program, the research method’s accuracy increases from 45% to 82% for the model with a weighting scheme as a function of the inverse of the square of mean error. The developed method demonstrates high efficiency for improving the performance of GPS and GLONASS solutions for the PPP measurement technology in air navigation.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Hussein Soffar ◽  
Mohamed F. Alsawy

Abstract Background Neuronavigation is a very beneficial tool in modern neurosurgical practice. However, the neuronavigation is not available in most of the hospitals in our country raising the question about its importance in localizing the calvarial extra-axial lesions and to what extent it is safe to operate without it. Methods We studied twenty patients with calvarial extra-axial lesions who underwent surgical interventions. All lesions were preoperatively located with both neuronavigation and the usual linear measurements. Both methods were compared regarding the time consumed to localize the tumor and the accuracy of each method to anticipate the actual center of the tumor. Results The mean error of distance between the planned center of the tumor and the actual was 6.50 ± 1.762 mm in conventional method, whereas the error was 3.85 ± 1.309 mm in IGS method. Much more time was consumed during the neuronavigation method including booting, registration, and positioning. A statistically significant difference was found between the mean time passed in the conventional method and IGS method (2.05 ± 0.826, 24.90 ± 1.334, respectively), P-value < 0.001. Conclusion In the setting of limited resources, the linear measurement localization method seems to have an accepted accuracy in the localization of calvarial extra-axial lesions and it saves more time than neuronavigation method.


2016 ◽  
Vol 11 (2) ◽  
pp. 235-239 ◽  
Author(s):  
Kristie-Lee Taylor ◽  
Will G. Hopkins ◽  
Dale W. Chapman ◽  
John B. Cronin

The purpose of this study was to calculate the coefficients of variation in jump performance for individual participants in multiple trials over time to determine the extent to which there are real differences in the error of measurement between participants. The effect of training phase on measurement error was also investigated. Six subjects participated in a resistance-training intervention for 12 wk with mean power from a countermovement jump measured 6 d/wk. Using a mixed-model meta-analysis, differences between subjects, within-subject changes between training phases, and the mean error values during different phases of training were examined. Small, substantial factor differences of 1.11 were observed between subjects; however, the finding was unclear based on the width of the confidence limits. The mean error was clearly higher during overload training than baseline training, by a factor of ×/÷ 1.3 (confidence limits 1.0–1.6). The random factor representing the interaction between subjects and training phases revealed further substantial differences of ×/÷ 1.2 (1.1–1.3), indicating that on average, the error of measurement in some subjects changes more than in others when overload training is introduced. The results from this study provide the first indication that within-subject variability in performance is substantially different between training phases and, possibly, different between individuals. The implications of these findings for monitoring individuals and estimating sample size are discussed.


2020 ◽  
Vol 4 (5) ◽  
pp. 951-956
Author(s):  
Miftahul Walid ◽  
Hozairi ◽  
Madukil Makruf

In this research, an analysis was carried out to develop a measuring instrument for seawater density in salt production using a microcontroller (Arduino Uno) and YL-69 sensor, this sensor was commonly used to measure soil moisture. The experimental method was used in this research to produce initial data in the form of resistance and seawater density values, then calculations are carried out using statistical methods to find equations and produce a constant variable that connects the resistance and seawater density values. The equation was used to compile the algorithm into Arduino Uno. As for the results of this research,  From six experiments conducted, two experiments produced the same sea water density value between the actual and the predicted, namely the 2nd and 5th experiments, while for other experiments there was a difference between the actual and predicted values, however, it was not too significant, the difference occurs between the value range 0 ~ 1, to determine the level of error, use the Mean Square Error (MSE) with an error level of = 0.5 and Mean Absolute Error (MAE) with an error level of = 0.6. The contribution of this research is an algorithm that can predict the density value (baume) based on the resistance value obtained from the YL 69 sensor.


2019 ◽  
Vol 34 (2) ◽  
Author(s):  
Sidra Anwar, Atif Mansoor Ahmad, Irum Abbas, Zyeima Arif

Purpose: To compare post-operative mean refractive error with SandersRetzlaff-Kraff/theoretical (SRK-T) and Holladay 1 formulae for intraocular lens (IOL) power calculation in cataract patients with longer axial lengths. Study Design: Randomized controlled trial. Place and Duration of Study: Department of Ophthalmology, Shaikh Zayed Hospital Lahore from 01 January 2017 01 January, 2018. Material and Methods: A total of 80 patients were selected from Ophthalmology Outdoor of Shaikh Zayed Hospital Lahore. The patients were randomly divided into two groups of 40 each by lottery method. IOL power calculation was done in group A using SRK-T formula and in group B using Holladay1 formula after keratomery and A-scan. All patients underwent phacoemulsification with foldable lens implantation. Post-operative refractive error was measured after one month and mean error was calculated and compared between the two groups. Results: Eighty cases were included in the study with a mean age of 55.8 ± 6.2 years. The mean axial length was 25.63 ± 0.78mm, and the mean keratometric power was 43.68 ± 1.1 D. The mean post-operative refractive error in group A (SRK/T) was +0.36D ± 0.33D and in group B (Holladay 1) it was +0.68 ± 0.43. The Mean Error in group A was +0.37D ± 0.31D as compared to +0.69D ± 0.44D in group B. Conclusion: SRK/T formula is superior to Holladay 1 formula for cases having longer axial lengths. Key words: Phacoemulsification, intraocular lens power, longer axial length, biometry.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Xiao Bo Liang ◽  
Xinghua Qu ◽  
YuanJun Zhang ◽  
Lianyin Xu ◽  
Fumin Zhang

Purpose Laser absolute distance measurement has the characteristics of high precision, wide range and non-contact. In laser ranging system, tracking and aiming measurement point is the precondition of automatic measurement. To solve this problem, this paper aims to propose a novel method. Design/methodology/approach For the central point of the hollow angle coupled mirror, this paper proposes a method based on correlation filtering and ellipse fitting. For non-cooperative target points, this paper proposes an extraction method based on correlation filtering and feature matching. Finally, a visual tracking and aiming system was constructed by combining the two-axis turntable, and experiments were carried out. Findings The target tracking algorithm has an accuracy of 91.15% and a speed of 19.5 frames per second. The algorithm can adapt to the change of target scale and short-term occlusion. The mean error and standard deviation of the center point extraction of the hollow Angle coupling mirror are 0.20 and 0.09 mm. The mean error and standard deviation of feature points matching for non-cooperative target were 0.06 mm and 0.16 mm. The visual tracking and aiming system can track a target running at a speed of 0.7 m/s, aiming error mean is 1.74 pixels and standard deviation is 0.67 pixel. Originality/value The results show that this method can achieve fast and high precision target tracking and aiming and has great application value in laser ranging.


1990 ◽  
Vol 69 (3) ◽  
pp. 1123-1130
Author(s):  
B. L. Plassman ◽  
R. W. Lansing

The perceptual cues used to reproduce a specific lung volume were studied in five healthy males. Performance was examined under three conditions that were designed progressively to remove the reliability of cues that a subject might use to duplicate a specific lung volume. As judged by the mean errors (disregarding the sign of the error) and constant errors (including the sign of the error), there were no significant differences in the accuracy with which subjects reproduced a standard volume, even when they were required to perform the reproductions at various inspiratory rates and starting volumes. The best performance was in the final experimental session in which the mean error for the group, all conditions combined, was 133 ml. There was a difference between conditions on the just-noticeable differences (a measure of variability including the sign of the error); subject performance was significantly more variable when the inspiratory flow rate was altered. The group mean error for the final session for just-noticeable differences was 93.3 ml. Our results indicate that a specific lung volume can be achieved using cues other than those associated with the movement made to attain that lung volume. The specific afferents that provided these cues are not known, but we propose that they uniquely signal static position.


2018 ◽  
Vol 10 (12) ◽  
pp. 2033
Author(s):  
Lei Liu ◽  
Ting Zhang ◽  
Yi Wu ◽  
Zhencong Niu ◽  
Qi Wang

In this paper, a new inversion procedure for cloud effective emissivity retrievals using a combined ground-based infrared cloud measuring instrument with ceilometer was developed. A quantitative sensitivity and performance analysis of the proposed method was also provided. It was found that the uncertainty of the derived effective emissivity was mainly associated with errors on the measurement radiance, the simulated radiance of clear sky and blackbody cloudy sky. Furthermore, the retrieval at low effective emissivity was most sensitive to the simulated clear sky radiances, whereas the blackbody cloudy sky radiance was the prevailing source of uncertainty at high emissivity. This newly proposed procedure was applied to the measurement taken in the CMA Beijing Observatory Station from November 2011 to June 2012 by the whole-sky infrared cloud-measuring system (WSIRCMS) and CYY-2B ceilometer. The cloud effective emissivity measurements were in good agreement with that of the MODIS/AQUA MYD06 Collection 6 (C6) cloud products. The mean difference between them was 0.03, with a linear correlation coefficient of 0.71. The results demonstrate that the retrieval method is robust and reliable.


Drones ◽  
2020 ◽  
Vol 4 (4) ◽  
pp. 76
Author(s):  
A. Bulent Koc ◽  
Patrick T. Anderson ◽  
John P. Chastain ◽  
Christopher Post

Poultry production requires electricity for optimal climate control throughout the year. Demand for electricity in poultry production peaks during summer months when solar irradiation is also high. Installing solar photovoltaic (PV) panels on the rooftops of poultry houses has potential for reducing the energy costs by reducing the electricity demand charges of utility companies. The objective of this research was to estimate the rooftop areas of poultry houses for possible PV installation using aerial images acquired with a commercially available low-cost unmanned aerial vehicle (UAV). Overhead images of 31 broiler houses were captured with a UAV to assess their potential for solar energy applications. Building plan dimensions were acquired and building heights were independently measured manually. Images were captured by flying the UAV in a double grid flight path at a 69-m altitude using an onboard 4K camera at an angle of −80° from the horizon with 70% and 80% overlaps. The captured images were processed using Agisoft Photoscan Professional photogrammetry software. Orthophotos of the study areas were generated from the acquired 3D image sequences using structure from motion (SfM) techniques. Building rooftop overhang obscured building footprint in aerial imagery. To accurately measure building dimensions, 0.91 m was subtracted from building roof width and 0.61 m was subtracted from roof length based on blueprint dimensions of the poultry houses. The actual building widths and lengths ranged from 10.8 to 184.0 m and the mean measurement error using the UAV-derived orthophotos was 0.69% for all planar dimensions. The average error for building length was 1.66 ± 0.48 m and the average error for widths was 0.047 ± 0.13 m. Building sidewall, side entrance and peak heights ranged from 1.9 to 5.6 m and the mean error was 0.06 ± 0.04 m or 1.2%. When compared to the horizontal accuracy of the same building measurements taken from readily available satellite imagery, the mean error in satellite images was −0.36%. The average length error was −0.46 ± 0.49 m and −0.44 ± 0.14 m for building widths. The satellite orthomosaics were more accurate for length estimations and the UAV orthomosaics were more accurate for width estimations. This disparity was likely due to the flight altitude, camera field of view, and building shape. The results proved that a low-cost UAV and photogrammetric SfM can be used to create digital surface models and orthomosaics of poultry houses without the need for survey-grade equipment or ground control points.


Sign in / Sign up

Export Citation Format

Share Document