Effects of basic fibroblast growth factor (FGF-2) on proliferation of human skin fibroblasts in type II diabetes mellitus

2002 ◽  
Vol 110 (04) ◽  
pp. 176-181 ◽  
Author(s):  
A. Grazul-Bilska ◽  
G. Luthra ◽  
L. Reynolds ◽  
J. Bilski ◽  
M. Johnson ◽  
...  
2017 ◽  
Vol 2017 ◽  
pp. 1-22 ◽  
Author(s):  
Daria Nawrocka ◽  
Katarzyna Kornicka ◽  
Joanna Szydlarska ◽  
Krzysztof Marycz

Type 2 diabetes (T2D) is a chronic metabolic disorder affecting increasing number of people in developed countries. Therefore new strategies for treatment of T2D and its complications are of special interest. Nowadays, cellular therapies involving mesenchymal stromal cells that reside in adipose tissue (ASCs) constitute a promising approach; however, there are still many obstacles concerning safety and effectiveness that need to be overcome before ASCs could be engaged for the treatment of diabetes mellitus. One of the challenges is preventing ASCs from deterioration caused by elevated oxidative stress present in diabetes milieu. In the current study we investigated the effect of basic fibroblast growth factor (bFGF) treatment on ASCs isolated from patients with diagnosed T2D. We demonstrate here that cell exposition to bFGF in 5 and 10 ng/mL dosages results in improved morphology, increased proliferative activity, reduced cellular senescence and apoptosis, and decreased oxidative stress, indicating recovery of ASCs’ function impaired by T2D. Therefore our results provide a support for bFGF as a potential therapeutic agent for improving stem cell-based approaches for the treatment of diabetes mellitus and its complications.


1995 ◽  
Vol 268 (3) ◽  
pp. L455-L464 ◽  
Author(s):  
S. Buch ◽  
R. N. Han ◽  
J. Liu ◽  
A. Moore ◽  
J. D. Edelson ◽  
...  

Lungs exposed to elevated O2 concentrations suffer an initial loss of type I pneumocytes, followed by a reparative type II pneumocyte hyperplasia. We hypothesized that type II pneumocyte hyperplasia after exposure of young adult rats to 85% O2 in vivo would be temporally related to 1) an increased concentration of intrapulmonary basic fibroblast growth factor (bFGF), a potent stimulator of type II pneumocyte DNA synthesis in vitro, and 2) an upregulation of pneumocyte receptors for bFGF (FGF-R). Increased rat lung bFGF mRNA, relative to air-exposed control animals, was observed at 4 days of exposure, with no increase at days 6 and 14 of exposure. Parallel changes were observed with bFGF receptor (flg) mRNA. Nuclear runoff assays confirmed increased transcription of both bFGF and flg genes in response to 85% O2, whereas increased translation at 6 days of exposure was confirmed by protein immunoanalysis. Immunohistochemistry demonstrated a broad distribution of bFGF throughout the lung, including the alveolar epithelium, which increased after 6 and 14 days of exposure to 85% O2. Our findings are compatible with a role for bFGF in O2-mediated pneumocyte hyperplasia.


2001 ◽  
Vol 168 (1) ◽  
pp. 87-94 ◽  
Author(s):  
J Doi ◽  
H Takemori ◽  
M Ohta ◽  
Y Nonaka ◽  
M Okamoto

Epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) are pluripotent growth factors that stimulate both the proliferation and steroidogenesis of adrenocortical cells. Here we demonstrate that EGF and bFGF specifically induce mRNA of 3beta-hydroxysteroid dehydrogenase type II (3betaHSD II) and suppress that of 17alpha-hydroxylase/lyase P450 (CYP17) in human adrenocortical H295R cells. The induction of 3betaHSD II mRNA did not occur until 6 h after the growth factor treatment and was completely abolished in the presence of a protein synthesis inhibitor, cycloheximide (CHX), suggesting that the induction required de novo protein synthesis. The CYP17 mRNA suppression began at almost the same time as the induction of the 3betaHSD II mRNA. Interestingly, the CYP17 mRNA level was increased by the CHX treatment. Both the 3betaHSD II and CYP17 mRNAs were repressed by treatment with a calmodulin kinase II (CaMK II) inhibitor, KN-93, and were enhanced by a mitogen-activated protein kinase (MAPK) inhibitor, PD98059. The PD98059-mediated induction of the 3betaHSD II mRNA was completely blocked by the CHX treatment. Interestingly, treatment with EGF in the presence of both PD98059 and CHX produced a greater increase in the CYP17 mRNA than did treatment in the presence of PD98059 alone. These results suggest that CHX-sensitive factor(s) and CaMK II- and MAPK-signaling pathways may have important roles in both induction of 3betaHSD II and suppression of CYP17 by EGF or bFGF in H295R cells.


Sign in / Sign up

Export Citation Format

Share Document