9 Anodic Arylation Reactions

2022 ◽  
Author(s):  
M. Selt ◽  
S. R. Waldvogel

The arylation of organic compounds is a tremendously important tool in organic synthesis, since substituted (het)arenes are essential moieties in many applications ranging from organic intermediates to natural products, pharmaceuticals, and materials. Therefore, an effective, sustainable, and economic synthetic accesses to such compounds is of great demand. This chapter covers the arylation of carbon and heteroatom compounds via an electrooxidative pathway. Direct dehydrogenative methods without the application of a metal catalyst as well as constant-current electrolyses are emphasized. The electrochemical synthesis of biaryl compounds, arylalkanes and arylalkenes, as well as arylated nitrogen, oxygen, and sulfur compounds are described in detail. Additionally, the synthesis of heterocycles through anodic arylation reactions is discussed.

2021 ◽  
Author(s):  
Wangjing Ma ◽  
Bonan Liu ◽  
Duanda Wang ◽  
Jun Zhao ◽  
Lu Zhang ◽  
...  

Carbon–carbon double bond (CCDB) isomerization is a method for synthesizing new organic compounds from olefins and their derivatives, which was based on C=C migration along carbon chain and cis/trans transform, and it plays a vital role in the fields of organic synthesis, synthesis of daily chemicals, raw oil’s development and synthesis of natural products and so on. In this paper, advances of five types of catalytic methods for CCDB of olefins and their derivatives since the 1960s were discussed in detail; Based on his recent work, the author mainly introduces the application and development of photocatalysis in CCDB of olefins and their derivatives.


2019 ◽  
Vol 16 (2) ◽  
pp. 258-275 ◽  
Author(s):  
Navjeet Kaur

Background:A wide variety of biological activities are exhibited by N, O and S containing heterocycles and recently, many reports appeared for the synthesis of these heterocycles. The synthesis of heterocycles with the help of metal and non-metal catalyst has become a highly rewarding and important method in organic synthesis. This review article concentrated on the synthesis of S-heterocylces in the presence of metal and non-metal catalyst. The synthesis of five-membered S-heterocycles is described here.Objective:There is a need for the development of rapid, efficient and versatile strategy for the synthesis of heterocyclic rings. Metal, non-metal and organocatalysis involving methods have gained prominence because traditional conditions have disadvantages such as long reaction times, harsh conditions and limited substrate scope.Conclusion:The metal-, non-metal-, and organocatalyst assisted organic synthesis is a highly dynamic research field. For ßthe chemoselective and efficient synthesis of heterocyclic molecules, this protocol has emerged as a powerful route. Various methodologies in the past few years have been pointed out to pursue more sustainable, efficient and environmentally benign procedures and products. Among these processes, the development of new protocols (catalysis), which avoided the use of toxic reagents, are the focus of intense research.


2018 ◽  
Vol 15 (2) ◽  
pp. 221-229 ◽  
Author(s):  
Shah Bakhtiar Nasir ◽  
Noorsaadah Abd Rahman ◽  
Chin Fei Chee

Background: The Diels-Alder reaction has been widely utilised in the syntheses of biologically important natural products over the years and continues to greatly impact modern synthetic methodology. Recent discovery of chiral organocatalysts, auxiliaries and ligands in organic synthesis has paved the way for their application in Diels-Alder chemistry with the goal to improve efficiency as well as stereochemistry. Objective: The review focuses on asymmetric syntheses of flavonoid Diels-Alder natural products that utilize chiral ligand-Lewis acid complexes through various illustrative examples. Conclusion: It is clear from the review that a significant amount of research has been done investigating various types of catalysts and chiral ligand-Lewis acid complexes for the enantioselective synthesis of flavonoid Diels-Alder natural products. The results have demonstrated improved yield and enantioselectivity. Much emphasis has been placed on the synthesis but important mechanistic work aimed at understanding the enantioselectivity has also been discussed.


2020 ◽  
Vol 17 (7) ◽  
pp. 540-547
Author(s):  
Chun-Hui Yang ◽  
Cheng Wu ◽  
Jun-Ming Zhang ◽  
Xiang-Zhang Tao ◽  
Jun Xu ◽  
...  

Background: The sulfinic esters are important and useful building blocks in organic synthesis. Objective: The aim of this study was to develop a simple and efficient method for the synthesis of sulfinic esters. Materials and Methods: Constant current electrolysis from thiols and alcohols was selected as the method for the synthesis of sulfinic esters. Results and Discussion: A novel electrochemical method for the synthesis of sulfinic esters from thiophenols and alcohols has been developed. Up to 27 examples of sulfinic esters have been synthesized using the current methods. This protocol shows good functional group tolerance as well as high efficiency. In addition, this protocol can be easily scaled up with good efficiency. Notably, heterocycle-containing substrates, including pyridine, thiophene, and benzothiazole, gave the desired products in good yields. A plausible reaction mechanism is proposed. Conclusion: This research not only provides a green and efficient method for the synthesis of sulfinic esters but also shows new applications of electrochemistry in organic synthesis. It is considered that this green and efficient synthetic protocol used to prepare sulfinic esters will have good applications in the future.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 720
Author(s):  
Satomi Niwayama

Symmetric organic compounds are generally obtained inexpensively, and therefore they can be attractive building blocks for the total synthesis of various pharmaceuticals and natural products. The drawback is that discriminating the identical functional groups in the symmetric compounds is difficult. Water is the most environmentally benign and inexpensive solvent. However, successful organic reactions in water are rather limited due to the hydrophobicity of organic compounds in general. Therefore, desymmetrization reactions in aqueous media are expected to offer versatile strategies for the synthesis of a variety of significant organic compounds. This review focuses on the recent progress of desymmetrization reactions of symmetric organic compounds in aqueous media without utilizing enzymes.


Author(s):  
Guobing Yan ◽  
Kaiying Qiu ◽  
Ming Guo

The C-F bond is the strongest single bond in organic compounds. It is the most challenging task to study the activation of C-F bond in organic synthesis. Trifluoromethyl-containing compounds, which...


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4226
Author(s):  
Nikolaos Pitsikas ◽  
Konstantinos Dimas

Natural products or organic compounds isolated from natural sources as primary or secondary metabolites have inspired numerous drugs [...]


2021 ◽  
Vol 7 (6) ◽  
pp. 465
Author(s):  
Takahito Toyotome ◽  
Masahiko Takino ◽  
Masahiro Takaya ◽  
Maki Yahiro ◽  
Katsuhiko Kamei

Schizophyllum commune is a causative agent of allergic bronchopulmonary mycosis, allergic fungal rhinosinusitis, and basidiomycosis. Diagnosis of these diseases remains difficult because no commercially available tool exists to identify the pathogen. Unique volatile organic compounds produced by a pathogen might be useful for non-invasive diagnosis. Here, we explored microbial volatile organic compounds produced by S. commune. Volatile sulfur compounds, dimethyl disulfide (48 of 49 strains) and methyl ethyl disulfide (49 of 49 strains), diethyl disulfide (34 of 49 strains), dimethyl trisulfide (40 of 49 strains), and dimethyl tetrasulfide (32 of 49 strains) were detected from headspace air in S. commune cultured vials. Every S. commune strain produced at least one volatile sulfur compound analyzed in this study. Those volatile sulfur compounds were not detected from the cultures of Aspergillus spp. (A. fumigatus, A. flavus, A. niger, and A. terreus), which are other major causative agents of allergic bronchopulmonary mycosis. The last, we examined H2S detection using lead acetate paper. Headspace air from S. commune rapidly turned the lead acetate paper black. These results suggest that those volatile sulfur compounds are potent targets for the diagnosis of S. commune and infectious diseases.


Sign in / Sign up

Export Citation Format

Share Document