Projectile Shape Effects in Hypervelocity Impact of Honeycomb-Core Sandwich Structures

2022 ◽  
Vol 35 (1) ◽  
pp. 04021112
Author(s):  
Reihaneh Aslebagh ◽  
Aleksandr Cherniaev
Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 12
Author(s):  
Łukasz Święch ◽  
Radosław Kołodziejczyk ◽  
Natalia Stącel

The work concerns the experimental analysis of the process of destruction of sandwich structures as a result of circumferential shearing. The aim of the research was to determine the differences that occur in the destruction mechanism of such structures depending on the thickness and material of the core used. Specimens with a Rohacell foam core and a honeycomb core were made for the purposes of the research. The specimen destruction process was carried out in a static loading test with the use of a system introducing circumferential shear stress. The analysis of the tests results was made based on the load-displacement curves, the maximum load, and the energy absorbed by individual specimens. The tests indicated significant differences in the destruction mechanism of specimens with varied core material. The specimen with the honeycomb core was characterized by greater stiffness, which caused the damage to occur locally in the area subjected to the pressure of the punch. In specimens with the foam core, due to the lower stiffness of that core, the skins of the structure were bent, which additionally transfers compressive and tensile loads. This led to a higher maximum force that the specimens obtained at the time of destruction and greater energy absorption.


2014 ◽  
Vol 59 (1) ◽  
pp. 11-16 ◽  
Author(s):  
J. Arbaoui ◽  
Y. Schmitt ◽  
J.-L. Pierrot ◽  
F.-X. Royer

Abstract Sandwich structures are widely used in lightweight construction especially in aerospace industries because of their high specific strength and stiffness. This paper investigates the effect of core thickness and intermediate layers on the mechanical properties of a polypropylene honeycomb core/composite facing multilayer sandwich structure under three points bending. We developed a theoretical model which makes it possible to calculate the shear properties in multi-cores. The results obtained by this model are agreed with our experimental results, and the results obtained with bending test showed that the mechanical properties of the composite multilayer structures increase with core thickness and intermediate layers.


2020 ◽  
Vol 864 ◽  
pp. 228-240
Author(s):  
Andrii Kondratiev ◽  
Oksana Prontsevych ◽  
Tetyana Nabokina

Adhesive sandwich structures with the honeycomb core of the metallic foil, polymeric papers and composites are widely and effectively used in the units of aerospace engineering and in the other industries owing to a number of undeniable advantages, including high specific strength and stiffness. In the process of designing and manufacturing of abovementioned structures, it is necessary to ensure high strength and reliability of the adhesive joint of the bearing skins and honeycomb core at a small area of their contact. The decisive factors influencing the bearing capacity of such joint are the technological parameters of the bonding process. Using the finite element modeling, the paper deals with the bearing capacity of the adhesive joint of bearing skins with the honeycomb core based on the aluminium foil and polymeric paper Nomex at transversal tearing for the key factors of the bonding process. The pattern of the adhesive joint failure (on the adhesive of honeycombs) has been revealed, depending on the depth of penetration of honeycombs ends in the adhesive, physical and mechanical characteristics of honeycombs, modulus of elasticity and tearing strength of the adhesive and thickness of the adhesive layer. Peculiar features of behavior of adhesive joints of the bearing skins with the honeycomb core based on the aluminium foil and polymeric paper Nomex under the load have been established, which should be taken into account in designing and manufacturing of honeycomb structures. The recommendations are given with regard to choosing of parameters of the process of honeycomb structure bonding, which allow providing with the acceptable accuracy the optimal depth of penetration of ends of the honeycomb core faces in the adhesive layer of specified depth.


2017 ◽  
Vol 21 (6) ◽  
pp. 1930-1952 ◽  
Author(s):  
Abhendra K Singh ◽  
Barry D Davidson ◽  
Alan T Zehnder ◽  
Benjamin PJ Hasseldine

An analytical model is developed to predict the loading and unloading response, as well as the residual dent diameter and dent depth, of carbon/epoxy-aluminum honeycomb core composite sandwich structures undergoing quasi-static indentation loading. The model considers damage created using spherical indenters and is valid up to the barely visible external damage threshold. The initial low load regime (until the onset of core crushing) is modeled using a combination of local Hertzian indentation of an elastic half-space and small deflection plate theory of a circular plate on an elastic foundation. For loads above those required to cause core crushing, the model uses the Rayleigh-Ritz method of energy minimization with the total system energy determined using a combination of face sheet bending energy, face sheet membrane energy and work done to the core during both elastic deformation and crushing. Degraded face sheet properties are used in the model beyond the onset of face sheet delamination, which is predicted using Griffith’s energy criterion. The model is validated using experimental results for sandwich structures consisting of quasi-isotropic 8- (thin) and 16- (thick) ply carbon/epoxy face sheets and aluminum honeycomb cores. The results show that the overall mechanics of the model are fundamentally correct and reflective of physical behavior. Thus, in its present form the model shows promise as a preliminary design tool.


2010 ◽  
Vol 97-101 ◽  
pp. 4363-4366
Author(s):  
Hui Liu ◽  
Jun Yan Liu ◽  
Yang Wang ◽  
Hui Juan Li

Lock-in thermography (LT), that is active infrared testing technology, mainly includes optical lock-in thermography (OLT) and ultrasound lock-in thermography (ULT). LT can be used to detect unbonds between honeycomb core and face sheet of sandwich structures. However, modulation frequency is an important influencing factor. In this paper, the principles of LT are represented, in experimental detections of simulated unbonds in honeycomb sandwich structures with Al-face sheet and CFRP-face sheet using OLT and ULT, detectability of OLT and ULT is compared and analyzed, effect of modulation frequency is researched and the optimal frequencies are obtained.


2019 ◽  
Vol 9 (2) ◽  
pp. 3955-3958
Author(s):  
T. Subhani

In this study, honeycomb sandwich structures were prepared and tested. Facesheets of sandwich structures were manufactured by carbon fiber epoxy matrix composites while Nomex® honeycomb was used as core material. An epoxy-based adhesive film was used to bond the composite facesheets with honeycomb core. Four different curing temperatures ranging from 100oC to 130oC were applied with curing times of 2h and 3h. Three-point bend test was performed to investigate the mechanical performance of honeycomb sandwich structures and thus optimize the curing parameters. It was revealed that the combination of a temperature of 110oC along with a curing time of 2h offered the optimum mechanical performance together with low damage in honeycomb core and facesheets.


2021 ◽  
pp. 114827
Author(s):  
D.K. Korupolu ◽  
P.R. Budarapu ◽  
V.R. Vusa ◽  
M.K. Pandit ◽  
J.N. Reddy

Author(s):  
Timotei Centea ◽  
Pavel Simacek ◽  
Mark Anders ◽  
Navid Niknafs Kermani ◽  
Daniel Zebrine ◽  
...  

1999 ◽  
Author(s):  
Scott Maley ◽  
C. T. Sun

Abstract This paper investigates the damping effect of loose particulate within the core of sandwich structures. Beam specimens fabricated from aluminum honeycomb core and IM7 carbon fiber face sheets with various amounts of loose particulate are experimentally examined. Both free vibration and forced vibration tests are performed. It is shown that a moderate amount of particulate can cause a large increase in damping. The effect of varying amounts of particulate is also investigated. Plate equations of motion with damping and inertia terms are derived to model the beam and compare with experimental results. Effective mass and effective viscous damping are generated by matching the theoretical model to the experimental data.


Sign in / Sign up

Export Citation Format

Share Document