Effect of Core Thickness and Intermediate Layers on Mechanical Properties of Polypropylene Honeycomb Multi-Layer Sandwich Structures

2014 ◽  
Vol 59 (1) ◽  
pp. 11-16 ◽  
Author(s):  
J. Arbaoui ◽  
Y. Schmitt ◽  
J.-L. Pierrot ◽  
F.-X. Royer

Abstract Sandwich structures are widely used in lightweight construction especially in aerospace industries because of their high specific strength and stiffness. This paper investigates the effect of core thickness and intermediate layers on the mechanical properties of a polypropylene honeycomb core/composite facing multilayer sandwich structure under three points bending. We developed a theoretical model which makes it possible to calculate the shear properties in multi-cores. The results obtained by this model are agreed with our experimental results, and the results obtained with bending test showed that the mechanical properties of the composite multilayer structures increase with core thickness and intermediate layers.

2013 ◽  
Vol 486 ◽  
pp. 283-288
Author(s):  
Ladislav Fojtl ◽  
Soňa Rusnáková ◽  
Milan Žaludek

This research paper deals with an investigation of the influence of honeycomb core compression on the mechanical properties of sandwich structures. These structures consist of prepreg facing layers and two different material types of honeycomb and are produced by modified compression molding called Crush-Core technology. Produced structures are mechanically tested in three-point bending test and subjected to low-velocity impact and Charpy impact test.


2018 ◽  
Vol 108 (10) ◽  
pp. 639-645
Author(s):  
P. Groche ◽  
J. Günzel ◽  
T. Suckow

Zur Ausnutzung der hohen spezifischen Festigkeit und folglich Eignung als Leichtbauwerkstoff von EN AW-7075 bedarf es neben den Umform- auch Wärmebehandlungsprozessen, die im Folgenden in den Umformprozess integriert werden und die Prozesskette somit deutlich kürzer und effizienter gestalten. Dieser Fachbeitrag zeigt, welches Produktivitäts- und Leichtbaupotenzial durch eine Inline-Wärmebehandlung erschlossen werden kann.   To be able to exploit the high specific strength and thus suitability of EN AW-7075 as a lightweight construction material, it requires not only forming but also heat treatment processes. The latter become integrated into the forming process and thus make the process chain significantly shorter and more efficient. This paper points out the potential for productivity and lightweight construction to be tapped by inline heat treatment.


2011 ◽  
Vol 201-203 ◽  
pp. 203-208
Author(s):  
Liang Chen ◽  
Shu Guang Zhao ◽  
Li Juan Zhang ◽  
Li Qiang Zhang ◽  
Wen Bing Zhang

Woven fabrics are used in a wide variety of products, and they are prized for their flexibility, formability, and high specific strength. However, modeling woven cloth is difficult due, in particular, to complex mechanical properties. In this paper, the shear behavior of plain woven fabric is studied. Through the analysis, a mechanical model is proposed which take the shearing properties into account. It uses physical-based model for animating cloth objects. Furthermore, we demonstrate the efficiency of this method with examples related to accurate cloth simulation from experimental shear curve measured on actual materials.


2013 ◽  
Vol 652-654 ◽  
pp. 89-92
Author(s):  
Attanadol Prapajaraswong ◽  
Seksak Asavavisithchai

Al foam is an advanced engineering material with many outstanding properties, such as very low density, high specific strength and stiffness, and large energy absorption. In the present study, pure Al foams were mixed with either cenosphere or precipitator fly ash particles of various contents. Fly ash particles are used in Al foams as reinforcement and stabilising materials which enable the foams with large expansion. It is found that Al foams with precipitator fly ash particles of various contents exhibited larger expansions than the foams with cenosphere fly ash particles. The quantitative analysis also revealed that more stable foam structure was obtained in Al foams with precipitator fly ash addition.


Metals ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1135 ◽  
Author(s):  
Li ◽  
Ma ◽  
Jia ◽  
Meng ◽  
Tang ◽  
...  

The microstructure and mechanical properties of rapidly solidified β-type Ti–Fe–Sn–Mo alloys with high specific strength and low elastic modulus were investigated. The results show that the phases of Ti–Fe–Sn–Mo alloys are composed of the β-Ti, α-Ti, and TiFe phases; the volume fraction of TiFe phase decreases with the increase of Mo content. The high Fe content results in the deposition of TiFe phase along the grain boundary of the Ti phase. The Ti75Fe19Sn5Mo1 alloy exhibits the high yield strength, maximum compressive strength, large plastic deformation, high specific strength, high Vickers hardness, and large toughness value, which is a superior new engineering material. The elastic modulus (42.1 GPa) of Ti75Fe15Sn5Mo5 alloy is very close to the elastic modulus of human bone (10–30 GPa), which indicating that the alloy can be used as a good biomedical alloy. In addition, the large H/Er and H3/Er2 values of Ti75Fe19Sn5Mo1 alloy indicate the good wear resistance and long service life as biomedical materials.


2015 ◽  
Author(s):  
Risa Yoshizaki ◽  
Kim Tae Sung ◽  
Atsushi Hosoi ◽  
Hiroyuki Kawada

Carbon nanotubes (CNTs) have very high specific strength and stiffness. The excellent properties make it possible to enhance the mechanical properties of polymer matrix composites. However, it is difficult to use CNTs as the reinforcement of long fibers because of the limitation of CNT growth. In recent years, a method to spin yarns from CNT forests has developed. We have succeeded in manufacturing the unidirectional composites reinforced with the densified untwisted CNT yarns. The untwisted CNT yarns have been manufactured by drawing CNTs through a die from vertically aligned CNT arrays. In this study, the densified untwisted CNT yarns with a polymer treatment were fabricated. The tensile strength and the elastic modulus of the yarns were improved significantly by the treatment, and they were 1.9 GPa and 140 GPa, respectively. Moreover, the polymer treatment prevented the CNT yarns from swelling due to impregnation of the matrix resin. Finally, the high strength CNT yarn composites which have higher volume fraction than a conventional method were successfully fabricated.


2014 ◽  
Vol 709 ◽  
pp. 399-402
Author(s):  
Jung Han Song ◽  
Seo Gou Choi

Aluminum (Al) alloys have great potential as ideal structural materials because of their high specific strength and stiffness. However, Al alloys exhibit poor ductility at room temperature. Enhancing the formability is a very important and challenging problem to both automotive and manufacturing engineers. In this study, the electro-plastic effects, which is first discovered in 1960s, of 5xxx Al alloy sheets are investigated to improve the formability. To begin with, a test system is built up to carry out the tensile test with heavy electric current flowing through the specimen. The evolutions of the flow stress and the electric resistivity are obtained using this test system. The significant decrease in the flow stress caused by the heavy flowing through current is observed.


2015 ◽  
Vol 813-814 ◽  
pp. 208-212
Author(s):  
S. Ghanaraja ◽  
K.L. Vinuth Kumar ◽  
K.S. Ravikumar ◽  
B.M. Madhusudan

The Synthesis of aluminium matrix composites is receiving considerable emphasis in meeting the requirements of various industries. Due to the desired properties such as low weight, high specific strength, good corrosion resistance and excellent wear resistance, they have received a great interest in the recent years. Metal-matrix composites (MMCs) based on aluminium and magnesium has emerged as an important class of materials and Al2O3can be considered as ideal reinforcements, due to their high strength, high aspect ratio and thermo-mechanical properties. The objective of this work is to reinforce Al 1100-Mg alloy with different wt% of Al2O3(0, 3, 6, 9 and 12) was added by melt stirring method and Extrusion is carried out (extrusion ratio of 12.25) for the same alloy and composites. Mechanical property like hardness and tensile properties have been investigated for cast and extruded of base alloy and composites.


2006 ◽  
Vol 326-328 ◽  
pp. 1729-1732 ◽  
Author(s):  
Roysuke Matsuzaki ◽  
Motoko Shibata ◽  
Akira Todoroki

Since composite materials have high specific strength and stiffness, they are used for many fields such as aerospace and marine structures. According to such utilities, joining method between composites and metals must be developed. In this study, dimple treatment is carried out as a new reinforcing method for FRP/metal co-cured joint. Dimple treatment is applied to the adhesive surface of metal so that resin of FRP permeates into dimples and the strength of joints increases. It is revealed that dimple treatment achieves as high bonding strength as chemical surface treatment.


Sign in / Sign up

Export Citation Format

Share Document