Borehole Cross-Sectional Shape Analysis under in Situ Stress

2020 ◽  
Vol 20 (6) ◽  
pp. 04020045 ◽  
Author(s):  
Zengqiang Han ◽  
Chuanying Wang ◽  
Yiteng Wang ◽  
Chao Wang
1984 ◽  
Vol 106 (4) ◽  
pp. 554-561 ◽  
Author(s):  
D. Segalman

A mathematical formulation has been developed for calculating the cross-sectional shape of hydraulic fractures. This formulation treats the problem as a free-boundary-type problem and is modeled after mathematical formulations developed for contact and lubrication problems. Numerical solution of the resulting equations has been used to address problems involving particularly difficult in-situ stress distributions, including problems in which the fracture breaks through high-stress barriers. The technique is illustrated on two example problems.


2020 ◽  
Vol 59 (28) ◽  
pp. 8661
Author(s):  
Tetsuya Hoshino ◽  
Masahiko Shiono ◽  
Banerjee Saswatee ◽  
Sadao Aoki ◽  
Kenji Sakurai ◽  
...  

Author(s):  
J.-F. Revol ◽  
Y. Van Daele ◽  
F. Gaill

The only form of cellulose which could unequivocally be ascribed to the animal kingdom is the tunicin that occurs in the tests of the tunicates. Recently, high-resolution solid-state l3C NMR revealed that tunicin belongs to the Iβ form of cellulose as opposed to the Iα form found in Valonia and bacterial celluloses. The high perfection of the tunicin crystallites led us to study its crosssectional shape and to compare it with the shape of those in Valonia ventricosa (V.v.), the goal being to relate the cross-section of cellulose crystallites with the two allomorphs Iα and Iβ.In the present work the source of tunicin was the test of the ascidian Halocvnthia papillosa (H.p.). Diffraction contrast imaging in the bright field mode was applied on ultrathin sections of the V.v. cell wall and H.p. test with cellulose crystallites perpendicular to the plane of the sections. The electron microscope, a Philips 400T, was operated at 120 kV in a low intensity beam condition.


Author(s):  
N. Rozhanski ◽  
A. Barg

Amorphous Ni-Nb alloys are of potential interest as diffusion barriers for high temperature metallization for VLSI. In the present work amorphous Ni-Nb films were sputter deposited on Si(100) and their interaction with a substrate was studied in the temperature range (200-700)°C. The crystallization of films was observed on the plan-view specimens heated in-situ in Philips-400ST microscope. Cross-sectional objects were prepared to study the structure of interfaces.The crystallization temperature of Ni5 0 Ni5 0 and Ni8 0 Nb2 0 films was found to be equal to 675°C and 525°C correspondingly. The crystallization of Ni5 0 Ni5 0 films is followed by the formation of Ni6Nb7 and Ni3Nb nucleus. Ni8 0Nb2 0 films crystallise with the formation of Ni and Ni3Nb crystals. No interaction of both films with Si substrate was observed on plan-view specimens up to 700°C, that is due to the barrier action of the native SiO2 layer.


Sign in / Sign up

Export Citation Format

Share Document