Closure to “Suppressing Ettringite-Induced Swelling of Gypseous Soil by Using Magnesia-Activated Ground Granulated Blast-Furnace Slag” by Wentao Li, Yaolin Yi, and Anand J. Puppala

Author(s):  
Wentao Li ◽  
Yaolin Yi ◽  
Anand J. Puppala
Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5198
Author(s):  
Khaled Ibrahim Azarroug Ehwailat ◽  
Mohd Ashraf Mohamad Ismail ◽  
Ali Muftah Abdussalam Ezreig

Gypseous soil is one type of expansive soil that contains a sufficient amount of sulphate. Cement and lime are the most common methods of stabilizing expansive soil, but the problem is that lime-treated gypseous soil normally fails in terms of durability due to the formation of ettringite, a highly deleterious compound. Moisture ingress causes a significant swelling of ettringite crystals, thereby causing considerable damage to structures and pavements. This study investigated the suitability of various materials (nano–Mg oxide (M), metakaolin (MK), and ground granulated blast-furnace slag (GGBS)) for the stabilization of gypseous soil. The results showed soil samples treated with 20% M-MK, M-GGBS, and M-GGBS-MK to exhibit lower swelling rates (<0.01% change in volume) compared to those treated with 10% and 20% of lime after 90 days of curing. However, soil samples stabilized with 10% and 20% binder of [(M-MK), (M-GGBS), and (M-GGBS-MK)] exhibited higher strengths after 90 days of soaking (ranging from 0.96–12.8 MPa) compared to those stabilized with 10% and 20% lime. From the morphology studies, the SEM and EDX analysis evidenced no formation of ettringite in the samples stabilized with M-MK-, M-GGBS-, and M-GGBS-MK. These results demonstrate the suitability of M-MK, M-GGBS, and M-GGBS-MK as effective agents for the stabilization of gypseous soil.


2021 ◽  
Vol 11 (14) ◽  
pp. 6618
Author(s):  
Khaled Ibrahim Azarroug Ehwailat ◽  
Mohd Ashraf Mohamad Ismail ◽  
Ali Muftah Abdussalam Ezreig

The treatment of sulfate-bearing soil with calcium-based stabilizers such as cement or lime often results in ettringite formation, consequently leading to swelling and strength deterioration. Ettringite formation has negative environmental and economic effects on various civil engineering structures. This study was conducted to investigate the use of different materials (nano–magnesium oxide (M), ground granulated blast-furnace slag (GGBS), and rice husk ash (RHA)) for gypseous soil stabilization to prevent ettringite formation. Various tests were performed, including flexural strength, unconfined compression strength, linear expansion, and microstructure analysis (SEM/EDX), on lime (L)-, (M)-, (M-RHA)-, (M-GGBS)-, and (M-GGBS-RHA)-stabilized gypseous soil samples to determine their properties. The results indicated that the swelling rates of the soil samples mixed with 20% M-RHA, M-GGBS, and M-GGBS-RHA binders were much lower (less than 0.01% of volume change) than those of the soil samples mixed with 10% and 20% lime-stabilized binders after a curing period of 90 days. Meanwhile, the strengths of the soil samples mixed with 20% of M-RHA, M-GGBS, and M-GGBS-RHA soil specimens after soaking of 90 days were obviously higher (with a range from 2.7–12.8 MPa) than those of the soil samples mixed with 20% of lime-stabilized binder. The SEM and EDX results showed no ettringite formation in the M-RHA-, M-GGBS-, and M-GGBS-RHA-stabilized soils. Overall, the test results proved the potential of M-RHA, M-GGBS, and M-GGBS-RHA as effective soil stabilizers.


2017 ◽  
Vol 68 (6) ◽  
pp. 1182-1187
Author(s):  
Ilenuta Severin ◽  
Maria Vlad

This article presents the influence of the properties of the materials in the geopolymeric mixture, ground granulated blast furnace slag (GGBFS) + wheat straw ash (WSA) + uncalcined red mud (RMu), and ground granulated blast furnace slag + wheat straw ash + calcined red mud (RMc), over the microstructure and mechanical properties of the synthesised geopolymers. The activation solutions used were a NaOH solution with 8M concentration, and a solution realised from 50%wt NaOH and 50%wt Na2SiO3. The samples were analysed: from the microstructural point of view through SEM microscopy; the chemical composition was determined through EDX analysis; and the compressive strength tests was done for samples tested at 7 and 28 days, respectively. The SEM micrographies of the geopolymers have highlighted a complex structure and an variable compressive strength. Compressive strength varied from 24 MPa in the case of the same recipe obtained from 70% of GGBFS + 25% WSA +5% RMu, alkaline activated with NaOH 8M (7 days testing) to 85 MPa in the case of the recipe but replacing RMu with RMc with calcined red mud, alkaline activated with the 50%wt NaOH and 50%wt Na2SiO3 solution (28 days testing). This variation in the sense of the rise in compressive strength can be attributed to the difference in reactivity of the materials used in the recipes, the curing period, the geopolymers structure, and the presence of a lower or higher rate of pores, as well as the alkalinity and the nature of the activation solutions used.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 382 ◽  
Author(s):  
Danying Gao ◽  
Zhenqing Zhang ◽  
Yang Meng ◽  
Jiyu Tang ◽  
Lin Yang

This work aims to investigate the effect of additional flue gas desulfurization gypsum (FGDG) on the properties of calcium sulfoaluminate cement (CSAC) blended with ground granulated blast furnace slag (GGBFS). The hydration rate, setting time, mechanical strength, pore structure and hydration products of the CSAC-GGBFS mixture containing FGDG were investigated systematically. The results show that the addition of FGDG promotes the hydration of the CSAC-GGBFS mixture and improves its mechanical strength; however, the FGDG content should not exceed 6%.


Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 596
Author(s):  
Yasuhiro Dosho

To improve the application of low-quality aggregates in structural concrete, this study investigated the effect of multi-purpose mineral admixtures, such as fly ash and ground granulated blast-furnace slag, on the performance of concrete. Accordingly, the primary performance of low-quality recycled aggregate concrete could be improved by varying the replacement ratio of the recycled aggregate and using appropriate mineral admixtures such as fly ash and ground granulated blast-furnace slag. The results show the potential for the use of low-quality aggregate in structural concrete.


Author(s):  
Jean Noël Yankwa Djobo ◽  
Dietmar Stephan

AbstractThis work aimed to evaluate the role of the addition of blast furnace slag for the formation of reaction products and the strength development of volcanic ash-based phosphate geopolymer. Volcanic ash was replaced by 4 and 6 wt% of ground granulated blast furnace slag to accelerate the reaction kinetics. Then, the influence of boric acid for controlling the setting and kinetics reactions was also evaluated. The results demonstrated that the competition between the dissolution of boric acid and volcanic ash-slag particles is the main process controlling the setting and kinetics reaction. The addition of slag has significantly accelerated the initial and final setting times, whereas the addition of boric acid was beneficial for delaying the setting times. Consequently, it also enhanced the flowability of the paste. The compressive strength increased significantly with the addition of slag, and the optimum replaced rate was 4 wt% which resulted in 28 d strength of 27 MPa. Beyond that percentage, the strength was reduced because of the flash setting of the binder which does not allow a subsequent dissolution of the particles and their precipitation. The binders formed with the addition of slag and/or boric acid are beneficial for the improvement of the water stability of the volcanic ash-based phosphate geopolymer.


2021 ◽  
Vol 276 ◽  
pp. 122218
Author(s):  
Sangram K. Sahoo ◽  
Benu G. Mohapatra ◽  
Sanjaya K. Patro ◽  
Prasanna K. Acharya

Sign in / Sign up

Export Citation Format

Share Document