Assessment of Streamflow Change in Middle-Lower Reaches of the Hanjiang River

2018 ◽  
Vol 23 (12) ◽  
pp. 05018024 ◽  
Author(s):  
Xiaorong Lu ◽  
Yanhua Zhuang ◽  
Xuelei Wang ◽  
Qing Yang
Author(s):  
Fengmin Song ◽  
Hong-Guang Ge ◽  
Hangang Zhao ◽  
Zhifeng Liu ◽  
Juan Si ◽  
...  

CATENA ◽  
2016 ◽  
Vol 145 ◽  
pp. 1-14 ◽  
Author(s):  
Peini Mao ◽  
Jiangli Pang ◽  
Chunchang Huang ◽  
Xiaochun Zha ◽  
Yali Zhou ◽  
...  

2021 ◽  
Author(s):  
Xizhi Lv ◽  
Shaopeng Li ◽  
Yongxin Ni ◽  
Qiufen Zhang ◽  
Li Ma

<p>In the past 60 years, climate changes and underlying surface of the watershed have affected the structure and characteristics of water resources to a different degree It is of great significance to investigate main drivers of streamflow change for development, utilization and planning management of water resources in river basins. In this study, the Huangshui Basin, a typical tributary of the upper Yellow River, is used as the research area. Based on the Budyko hypothesis, streamflow and meteorological data from 1958-2017 are used to quantitatively assess the relative contributions of changes in climate and watershed characteristic to streamflow change in research area. The results show that: the streamflow of Huangshui Basin shows an insignificant decreasing trend; the sensitivity coefficients of streamflow to precipitation, potential evapotranspiration and watershed characteristic parameter are 0.5502, -0.1055, and 183.2007, respectively. That is, an increase in precipitation by 1 unit will induce an increase of 0.5502 units in streamflow, and an increase in potential evapotranspiration by 1 unit will induce a decrease of 0.1055 units in streamflow, and an increase in the watershed characteristic parameter by 1 unit will induce a decrease of 183.2007 units in streamflow. Compared with the reference period (1958-1993), the streamflow decreased by 20.48mm (13.59%) during the change period (1994-2017), which can be attribution to watershed characteristic changes (accounting for 73.64%) and climate change (accounting for 24.48%). Watershed characteristic changes exert a dominant influence upon the reduction of streamflow in the Huangshui Basin.</p>


2021 ◽  
Author(s):  
Haoyu Jin ◽  
Xiaohong Chen ◽  
Ruida Zhong

Abstract Runoff prediction has an important guiding role in the planning and management of regional water resources, flood prevention and drought resistance, and can effectively predict the risk of changes in regional water resources. This study used 12 runoff prediction methods to predict the runoff of four hydrological stations in the Hanjiang River Basin (HRB). Through the MCMC method, the HRB runoff probability conversion model from low to high (high to low) is constructed. The study found that the runoff of the HRB had a decreasing trend. In the mid-1980s, the runoff had a significant decreasing trend. The smoother the runoff changes, the easier it is to make accurate prediction. On the whole, the QS-MFM, MFM, MA-MFM, CES and DNN methods have strong generalization ability and can more accurately predict the runoff of the HRB. The Logistic model can accurately simulate the change of runoff status in the HRB. Among them, the HLT station has the fastest conversion rate of drought and flood, and the flow that generates floods is 6 times that of drought. The smaller the basin area, the larger the gap between drought and flood discharge. Overall, this research provides important technical support for the prediction of change in water resources and the transition probability from drought to flood in the HRB.


Water ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1277 ◽  
Author(s):  
Jing Zhao ◽  
Shengzhi Huang ◽  
Qiang Huang ◽  
Hao Wang ◽  
Guoyong Leng

Quantifying the relative contributions of climate variability and human activity to streamflow change is important for effective water resource use and management. Four sub-catchments of the Wei River Basin (WRB) in the Loess Plateau in China were selected as the study region, where the evolution of parameter α from the latest Budyko equation (Wang-Tang equation) was explored using an 11-year moving window. The elasticity of streamflow was derived from the climatic aridity index, represented by the ratio of annual potential evaporation ( E P ) to annual precipitation ( P ), and catchment characteristics as represented by α . The effects of climate change and human activities on streamflow change during 1971–2010 were quantified with climate elasticity and decomposition methods. The contributions of different types of human activities to streamflow were further empirically determined using the water and soil conservation method. Results indicate that (1) under the same climate condition ( P and E P ), a higher value of α caused an increase in evaporation rate ( E / P ) and a decrease in runoff. Changes in these hydrological variables led to a subsequent reduction in streamflow in the WRB; (2) The absolute value of the precipitation elasticity was larger than the potential evaporation elasticity, indicating that streamflow change was more sensitive to precipitation; (3) The results based on the two methods were consistent. Climate change and human activities contributed to the decrease in streamflow by 29% and 71%, respectively, suggesting that human activities have exerted more profound impacts on streamflow in the study region; (4) Contributions of different water and soil conservation measures to streamflow reduction were calculated and sorted in descending order: Irrigation, industrial and domestic consumption, terrace, afforestation, reservoirs, check-dams, then grass-planting.


2018 ◽  
Vol 43 (1) ◽  
pp. 11-15
Author(s):  
Yu Xiaohui ◽  
Yang Ruhui ◽  
Liu Bo

Urban spatial form influences the social, economic, and ecological development modes of the city. The spatial form during the urbanization of Hanjiang River Basin in Southern Shaanxi needs to be studied. In this study, research methodologies on urban spatial form in China and abroad were summarized. The concept of ecology background was applied, and the research framework for urban spatial form, which integrated the background, framework, core, axis, cluster, and skin, was established. Valley cities in the Hanjiang River Basin in Southern Shaanxi were classified into wide valley, narrow valley, and canyon cities. The spatial form characteristics of these three types of valley cities were discussed. A case study based on a typical city-Yang County-was conducted to discuss the characteristics of the aforementioned six elements of urban spatial form. Finally, spatial form characteristics were summarized. These characteristics provide a basis for the study of the small valley urban spatial form in the Hanjiang River Basin in Southern Shaanxi.


Sign in / Sign up

Export Citation Format

Share Document