Quantitative estimation on contribution of climate changes and watershed characteristic changes to decreasing streamflow in the Huangshui Basin, China

Author(s):  
Xizhi Lv ◽  
Shaopeng Li ◽  
Yongxin Ni ◽  
Qiufen Zhang ◽  
Li Ma

<p>In the past 60 years, climate changes and underlying surface of the watershed have affected the structure and characteristics of water resources to a different degree It is of great significance to investigate main drivers of streamflow change for development, utilization and planning management of water resources in river basins. In this study, the Huangshui Basin, a typical tributary of the upper Yellow River, is used as the research area. Based on the Budyko hypothesis, streamflow and meteorological data from 1958-2017 are used to quantitatively assess the relative contributions of changes in climate and watershed characteristic to streamflow change in research area. The results show that: the streamflow of Huangshui Basin shows an insignificant decreasing trend; the sensitivity coefficients of streamflow to precipitation, potential evapotranspiration and watershed characteristic parameter are 0.5502, -0.1055, and 183.2007, respectively. That is, an increase in precipitation by 1 unit will induce an increase of 0.5502 units in streamflow, and an increase in potential evapotranspiration by 1 unit will induce a decrease of 0.1055 units in streamflow, and an increase in the watershed characteristic parameter by 1 unit will induce a decrease of 183.2007 units in streamflow. Compared with the reference period (1958-1993), the streamflow decreased by 20.48mm (13.59%) during the change period (1994-2017), which can be attribution to watershed characteristic changes (accounting for 73.64%) and climate change (accounting for 24.48%). Watershed characteristic changes exert a dominant influence upon the reduction of streamflow in the Huangshui Basin.</p>

2013 ◽  
Vol 17 (10) ◽  
pp. 4143-4158 ◽  
Author(s):  
G. Mascaro ◽  
M. Piras ◽  
R. Deidda ◽  
E. R. Vivoni

Abstract. The water resources and hydrologic extremes in Mediterranean basins are heavily influenced by climate variability. Modeling these watersheds is difficult due to the complex nature of the hydrologic response as well as the sparseness of hydrometeorological observations. In this work, we present a strategy to calibrate a distributed hydrologic model, known as TIN-based Real-time Integrated Basin Simulator (tRIBS), in the Rio Mannu basin (RMB), a medium-sized watershed (472.5 km2) located in an agricultural area in Sardinia, Italy. In the RMB, precipitation, streamflow and meteorological data were collected within different historical periods and at diverse temporal resolutions. We designed two statistical tools for downscaling precipitation and potential evapotranspiration data to create the hourly, high-resolution forcing for the hydrologic model from daily records. Despite the presence of several sources of uncertainty in the observations and model parameterization, the use of the disaggregated forcing led to good calibration and validation performances for the tRIBS model, when daily discharge observations were available. The methodology proposed here can be also used to disaggregate outputs of climate models and conduct high-resolution hydrologic simulations with the goal of quantifying the impacts of climate change on water resources and the frequency of hydrologic extremes within medium-sized basins.


2013 ◽  
Vol 10 (6) ◽  
pp. 7687-7732 ◽  
Author(s):  
G. Mascaro ◽  
M. Piras ◽  
R. Deidda ◽  
E. R. Vivoni

Abstract. The water resources and hydrologic extremes in Mediterranean basins are heavily influenced by climate variability. Modeling these watersheds is difficult due to the complex nature of the hydrologic response as well as the sparseness of hydrometeorological observations. In this work, we present a strategy to calibrate a distributed hydrologic model, known as TIN-based Real-time Integrated Basin Simulator (tRIBS), in the Rio Mannu basin (RMB), a medium-sized watershed (472.5 km2) located in an agricultural area in Sardinia, Italy. In the RMB, precipitation, streamflow and meteorological data were collected within different historical periods and at diverse temporal resolutions. We designed two statistical tools for downscaling precipitation and potential evapotranspiration data to create the hourly, high-resolution forcing for the hydrologic model from daily records. Despite the presence of several sources of uncertainty in the observations and model parameterization, the use of the disaggregated forcing led to good calibration and validation performances for the tRIBS model, when daily discharge observations were available. The methodology proposed here can be also used to disaggregate outputs of climate models and conduct high-resolution hydrologic simulations with the goal of quantifying the impacts of climate change on water resources and the frequency of hydrologic extremes within medium-sized basins.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Xizhi Lv ◽  
Zhongguo Zuo ◽  
Yongxin Ni ◽  
Juan Sun ◽  
Henian Wang

Abstract Hydrological cycle changes that occur due to a changing environment is a hot topic in the field of hydrological science. It is of great practical significance to study the response mechanism of hydrological process change for future water resources planning and management. In this study, the effects of climate and watershed characteristic change on the streamflow in a typical tributary of the Yellow River (the Fen River watershed) are studied based on the Budyko hypothesis. The results show that: the sensitivity coefficients of streamflow to precipitation, potential evapotranspiration, and the watershed characteristic coefficient were 0.1809, −0.0551, and −27.0882, respectively. This meant that a 1 mm decrease in the precipitation would induce a 0.1809 mm decrease in the streamflow. Additionally, a 1 mm decrease in the potential evapotranspiration would induce a 0.0551 mm increase in the streamflow, and an increase of 1 in the watershed characteristic coefficient would induce a 27.0882 mm decrease in the streamflow. The streamflow of the Fen River watershed showed a significant decreasing trend during the reference period (1951–1977). In addition, the streamflow of the change period (1978–2010) decreased 26.87 mm; and this was primarily caused by watershed characteristic change which accounted for 92.27%, while climate change only accounted for 6.50%.


2016 ◽  
Vol 154 ◽  
pp. 687-695 ◽  
Author(s):  
Yongnan Zhu ◽  
Zhaohui Lin ◽  
Jianhua Wang ◽  
Yong Zhao ◽  
Fan He

Author(s):  
Pan Wu ◽  
Xu-Sheng Wang ◽  
Sihai Liang

Abstract. Though extensive researches were conducted in the source region of the Yellow River (SRYR) to analyse climate change influence on streamflow, however, few researches concentrate on streamflow of the sub-basin above the Huangheyan station in the SRYR (HSRYR) where a water retaining dam was built in the outlet in 1999. To improve the reservoir regulation strategies, this study analysed streamflow change of the HSRYR in a mesoscale. A tank model (TM) was proposed and calibrated with monthly observation streamflow from 1991 to 1998. In the validation period, though there is a simulation deviation during the water storage and power generation period, simulated streamflow agrees favourably with observation data from 2008 to 2013. The model was further validated by two inside lakes area obtained from Landsat 5, 7, 8 datasets from 2000 to 2014, and significant correlations were found between the simulated lake outlet runoff and respective lake area. Then 21 Global Climate Models (GCM) ensembled data of three emission scenarios (SRA2, SRA1B and SRB1) were downscaled and used as input to the TM to simulate the runoff change of three benchmark periods 2011–2030 (2020s), 2046–2065 (2050s), 2080–2099 (2090s), respectively. Though temperature increase dramatically, these projected results similarly indicated that streamflow shows an increase trend in the long term. Runoff increase is mainly caused by increasing precipitation and decreasing evaporation. Water resources distribution is projected to change from summer-autumn dominant to autumn winter dominant. Annual lowest runoff will occur in May caused by earlier snow melting and increasing evaporation in March. According to the obtained results, winter runoff should be artificially stored by reservoir regulation in the future to prevent zero-flow occurrent in May. This research is helpful for water resources management and provides a better understand of streamflow change caused by climate change in the future.


2021 ◽  
Vol 11 (7) ◽  
Author(s):  
O. O. Aiyelokun ◽  
O. A. Agbede

AbstractWater resources cannot be effectively managed unless potential evapotranspiration is determined with high accuracy at headwater catchments. The study presents the most suitable feature combinations for building a reliable potential evapotranspiration (PET) model in the headwater catchments of Ogun River Basin, Southwest Nigeria. Using rainfall (R), wind speed (U2), sunshine hour (S), relative humidity (Rh), minimum temperature (Tmin) and maximum temperature (Tmax) as input features, a Random Forest (RF) model was developed to predict PET. Although the model yielded satisfactory results, it was subjected to the minimal depth and percentage increase in mean square error (%IncMSE). This was done to reduce the input features and to increase model accuracy. Thereafter various combinations of important input features were examined in order to establish the best combinations required to yield optimum results. The study revealed that although Tmax (%IncMSE of 652.09, p value < 0.05) and Rh (%IncMSE of 254.36, p value < 0.05) were the most important predictors of PET, a more reliable RF model was achieved when S and U2 were combined with them. Consequently, this study presents RF with a combination of four parameters (Tmax, Rh, S and U2) as an excellent computational technique for the prediction of PET in headwater catchments.


Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 748
Author(s):  
Ming Li ◽  
Qingsong Tian ◽  
Yan Yu ◽  
Yueyan Xu ◽  
Chongguang Li

The sustainable and efficient use of water resources has gained wide social concern, and the key point is to investigate the virtual water trade of the water-scarcity region and optimize water resources allocation. In this paper, we apply a multi-regional input-output model to analyze patterns and the spillover risks of the interprovincial virtual water trade in the Yellow River Economic Belt, China. The results show that: (1) The agriculture and supply sector as well as electricity and hot water production own the largest total water use coefficient, being high-risk water use sectors in the Yellow River Economic Belt. These two sectors also play a major role in the inflow and outflow of virtual water; (2) The overall situation of the Yellow River Economic Belt is virtual water inflow, but the pattern of virtual water trade between eastern and western provinces is quite different. Shandong, Henan, Shaanxi, and Inner Mongolia belong to the virtual water net inflow area, while the virtual water net outflow regions are concentrated in Shanxi, Gansu, Xinjiang, Ningxia, and Qinghai; (3) Due to higher water resource stress, Shandong and Shanxi suffer a higher cumulative risk through virtual water trade. Also, Shandong, Henan, and Inner Mongolia have a higher spillover risk to other provinces in the Yellow River Economic Belt.


Sign in / Sign up

Export Citation Format

Share Document