Seismic Behavior and Design of Concrete-Filled Thin-Walled Steel Tube Column-to-Foundation Connections

2021 ◽  
Vol 147 (6) ◽  
pp. 04021072
Author(s):  
Jiepeng Liu ◽  
Tianxiang Xu ◽  
Xuanding Wang
2018 ◽  
Vol 15 (1) ◽  
pp. 59
Author(s):  
NAZRUL AZMI AHMAD ZAMRI ◽  
CLOTILDA PETRUS ◽  
AZMI IBRAHIM ◽  
HANIZAH AB HAMID

The application of concrete filled steel tubes (CFSTs) as composite members has widely been used around the world and is becoming popular day by day for structural application especially in earthquake regions. This paper indicates that an experimental study was conducted to comprehend the behaviour of T-stub end plates connected to concrete filled thin-walled steel tube (CFTST) with different types of bolts and are subjected to pullout load. The bolts used are normal type bolt M20 grade 8.8 and Lindapter Hollo-bolt HB16 and HB20. A series of 10 mm thick T-stub end plates were fastened to 2 mm CFTST of 200 mm x 200 mm in cross-section. All of the specimens were subjected to monotonic pull-out load until failure. Based on test results, the Lidapter Hollo-bolts showed better performance compare to normal bolts. The highest ultimate limit load for T-stub end plate fasten with Lindapter Hollo-bolt is four times higher than with normal bolt although all end plates show similar behaviour and failure mode patterns. It can be concluded that T-stub end plate with Lindapter Hollo-bolt shows a better performance in the service limit and ultimate limit states according to the regulations in the design codes.


2021 ◽  
pp. 136943322110073
Author(s):  
Yu Cheng ◽  
Yuanlong Yang ◽  
Binyang Li ◽  
Jiepeng Liu

To investigate the seismic behavior of joint between special-shaped concrete-filled steel tubular (CFST) column and H-section steel beam, a pseudo-static test was carried out on five specimens with scale ratio of 1:2. The investigated factors include stiffening types of steel tube (multi-cell and tensile bar) and connection types (exterior diaphragm and vertical rib). The failure modes, hysteresis curves, skeleton curves, stress distribution, and joint shear deformation of specimens were analyzed to investigate the seismic behaviors of joints. The test results showed the connections of exterior diaphragm and vertical rib have good seismic behavior and can be identified as rigid joint in the frames with bracing system according to Eurocode 3. The joint of special-shaped column with tensile bars have better seismic performance by using through vertical rib connection. Furthermore, a finite element model was established and a parametric analysis with the finite element model was conducted to investigate the influences of following parameters on the joint stiffness: width-to-thickness ratio of column steel tube, beam-to-column linear stiffness ratio, vertical rib dimensions, and axial load ratio of column. Lastly, preliminary design suggestions were proposed.


2006 ◽  
Vol 06 (04) ◽  
pp. 457-474 ◽  
Author(s):  
M. A. BRADFORD ◽  
A. ROUFEGARINEJAD ◽  
Z. VRCELJ

Circular thin-walled elastic tubes under concentric axial loading usually fail by shell buckling, and in practical design procedures the buckling load can be determined by modifying the local buckling stress to account empirically for the imperfection sensitive response that is typical in Donnell shell theory. While the local buckling stress of a hollow thin-walled tube under concentric axial compression has a solution in closed form, that of a thin-walled circular tube with an elastic infill, which restrains the local buckling mode, has received far less attention. This paper addresses the local buckling of a tubular member subjected to axial compression, and formulates an energy-based technique for determining the local buckling stress as a function of the stiffness of the elastic infill by recourse to a transcendental equation. This simple energy formulation, with one degree of buckling freedom, shows that the elastic local buckling stress increases from 1 to [Formula: see text] times that of a hollow tube as the stiffness of the elastic infill increases from zero to infinity; the latter case being typical of that of a concrete-filled steel tube. The energy formulation is then recast into a multi-degree of freedom matrix stiffness format, in which the function for the buckling mode is a Fourier representation satisfying, a priori, the necessary kinematic condition that the buckling deformation vanishes at the point where it enters the elastic medium. The solution is shown to converge rapidly, and demonstrates that the simple transcendental formulation provides a sufficiently accurate representation of the buckling problem.


2021 ◽  
Vol 246 ◽  
pp. 113033
Author(s):  
Tianxiang Xu ◽  
Sumei Zhang ◽  
Jiepeng Liu ◽  
Xuanding Wang

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Alireza Bahrami ◽  
Ali Mahmoudi Kouhi

Abstract Concrete-filled thin-walled steel tubular slender columns are studied in this paper to evaluate their stiffness. The slender columns have various steel tube thicknesses, length/diameter (width) ratios, and concrete compressive strengths. The columns are loaded by axial and eccentric loads. Two experimental tests of the slender and stub columns are described. Also, the finite element software ABAQUS is utilised to simulate and analyse the columns. The tested columns are simulated taking into account all their features in the tests to verify the simulation of the columns. The simulation results are compared with the tests results which reveal that good agreements exist between them. Thus, the proposed simulation method of the columns is verified. In order to assess the stiffness of the columns under different conditions, various load eccentricities (0 mm, 25 mm, and 50 mm), cross-sectional configurations (circular, rectangular, and square), and steel tube thicknesses (2 mm, 3.35 mm, and 5 mm) are adopted for the developed columns. The columns are simulated and analysed based on the verified simulation method considering the mentioned conditions. As a conclusion, the stiffness of the columns is generally reduced by the increase of the load eccentricity from 0 mm to 25 mm and 50 mm. Further, more uniform distribution of the stiffness is witnessed for the columns with lower eccentricities. In addition, the enhancement of the load eccentricity increased the reduction slope of the stiffness graph for the columns. Although the initial stiffness of the circular column is slightly lower than the rectangular and square columns, the stiffness has more uniform distribution which is preferred. Larger stiffness is achieved for the columns by increasing the steel tube thickness from 2 mm to 3.35 mm and 5 mm.


2018 ◽  
Vol 8 (9) ◽  
pp. 1602 ◽  
Author(s):  
Zhao Yang ◽  
Chengxiang Xu

Local buckling in steel tubes was observed to be capable of reducing the ultimate loads of thin-walled concrete-filled steel-tube (CFST) columns under axial compression. To strengthen the steel tubes, steel bars were proposed in this paper to be used as stiffeners fixed onto the tubes. Static-loading tests were conducted to study the compression behavior of square thin-walled CFST columns with steel bar stiffeners placed inside or outside the tube. The effect and feasibility of steel bar stiffeners were studied through the analysis of failure mode, load–displacement relationship, ultimate load, ductility, and local buckling. Different setting methods of steel bars were compared as well. The results showed that steel-bar stiffeners proposed in this paper can be effective in delaying local buckling as well as increasing the bearing capacity of the columns, but will decrease the ductility of the columns. In order to obtain a higher bearing capacity of columns, steel bars with low stiffness should be placed inside and steel bars with high stiffness should be placed outside of the steel tubes. The study is helpful in providing reference to the popularization and application of this new structural measure to avoid or delay the local buckling of thin-walled CFST columns.


Sign in / Sign up

Export Citation Format

Share Document