Compression performance of thin-walled square steel tube/bamboo plywood composite hollow columns with binding bars

2017 ◽  
Vol 21 (3) ◽  
pp. 347-364 ◽  
Author(s):  
Weifeng Zhao ◽  
Jing Zhou ◽  
Zhilin Long ◽  
Wanxi Peng
2011 ◽  
Vol 94-96 ◽  
pp. 220-224 ◽  
Author(s):  
Xi Guang Cui ◽  
Hai Dong Xu

Considering the strain rate then puts forward the modified uniaxial dynamic constitutive model related to strain rate in concrete-filled square steel tube and the modified calculation results match well with the experimental results. Based on the above conclusion, uniaxial compression performance finite element analysis with different strain rate among 10-5/s–10-3/s is completed, the results showed that strain rate can obviously change the dynamic performance of the concrete-filled square steel tube. Through the analysis of the influencing factors of the core concrete compressive strength, it is showed that with the increasing of the strain rate and the improving of concrete strength, the ultimate bearing capacity of concrete-filled square steel tube is higher and the ductility is reduced. With the increasing of stirrup ratio, ultimate bearing capacity is greater and the ductility is enhanced. With the sectional dimensions increasing, the ultimate bearing capacity is greater and the ductility is enhanced.


2013 ◽  
Vol 690-693 ◽  
pp. 914-918
Author(s):  
Yue Hong Li ◽  
Bai Shou Li

In order to study ribbed thin-walled square steel tube recycled concrete eccentric compression column, used the mechanical properties of ANSYS software, conduct the nonlinear numerical simulation. The analysis of the ribbed and ribbed, recycled coarse aggregate replacement ratio and eccentricity, three factors on the eccentric compression column mechanical performance, proved the thin-walled square steel tube that recycled concrete composite column the effectiveness of three-dimensional finite element simulation. The result shows that: when aggregate replace rate was 0%, ribbed specimen than not ribbed specimen axial displacement and displacement to the reduced to 5.77% and 2.33% respectively. When the aggregate replace rate was 50%, ribbed specimen than not ribbed specimen shaft voltage and bias displacement has been reduced by 6.53% and 4.22%; When the aggregate replace rate was 0%, ribbed specimen than not ribbed specimen axis pressure bearing capacity and bias the bearing capacity increased by 1.21% and 2.74%. When the aggregate replace rate was 50%, ribbed specimen than not ribbed specimen axis pressure bearing capacity and bias the ultimate bearing capacity increased by 1.04% and 2.82%.


2012 ◽  
Vol 608-609 ◽  
pp. 1764-1768
Author(s):  
Yue Hong Li ◽  
Ping Zhang ◽  
Bai Shou Li

In order to analyze regeneration block mixed short columns and crack of recycled blocks, to flakiness ratio, mixing ratio, confinement coefficient and there are no ribs for the pilot study on main parameters, on root regeneration of thin-walled square tube 15 blocks of mixed axial compression test of short column. Research results indicates that: Specimen without ribs of ductility coefficient are going with flakiness ratio confinement coefficient of increases and reduces, approximate is linear relationship; and Specimen with rib short column of ductility coefficient are with flakiness ratio and confinement coefficient of increases and first increases then reduces, approximate is parabola relationship; internal concrete of Specimen without ribs of crack distribution concentrated in column Central, and internal concrete of Specimen with ribs of crack distribution along axis to more uniform, with ANSYS established model on internal concrete crack for nonlinear analysis. And experimental waist-shaped crease damaged concrete cracks occurred when parts of development corresponds to the situation.


2011 ◽  
Vol 94-96 ◽  
pp. 962-969
Author(s):  
Hai Chao Wang ◽  
Xi Quan Xu ◽  
Li Jun Zhou ◽  
Hong Ying Zhang ◽  
Feng Lian Yang

Based on the compression characteristics of the concrete-filled thin-walled square steel tube short columns, the U-shaped tie bars are designed in this paper. The U-shaped tie bars and steel pipe walls are connected with each other in T-shape in order to enhance the local stability of the walls under pressure. According to the concrete strength C30/C35/C40 and the thickness of the steel plates 1.25mm/1.75mm/2.5mm,42 short-column specimens are made, and the size of all specimens is 200mm×200mm×690mm.The bearing capacity test is done by the 500-ton electro-hydraulic serve testing machine. The strain of U-shaped tie bar and thin-walled steel are tested, and then the whole curve of compression process is obtained. The results show that the U-shaped tie bar has a very good role in bonding, and has good effects on improving buckling mode and the ductility of the components significantly. Concrete-filled thin-walled square steel tube short column fixed U-shaped tie bar has advantages on stronger post- deformability and more applicable to configuration compared with existing research achievements, and can provide a reference for engineering design.


2013 ◽  
Vol 690-693 ◽  
pp. 678-681
Author(s):  
Li Sha Wang ◽  
Bai Shou Li

For the problem of square concrete-filled steel tube (CFST) under the action of axial pressure, concrete received local compression and buckling occurred in the application of thin-walled steel pipe.Using built-in spiral reinforcement to strengthen the constraints of thin-walled square steel tube to core concrete. And by using ANSYS program established the built-in spiral reinforcement of thin-walled square steel tube concrete composite column 3 d finite element model, and the results show that spiral reinforcement strengthen the constraint effect, increase the ultimate bearing capacity of the composite columns of square steel tube by 7.41%; And with stiffening rib and rod measures were compared, built-in spiral ripe construction is convenient, easily applied.


Structures ◽  
2020 ◽  
Vol 25 ◽  
pp. 386-397
Author(s):  
Jinliang Bian ◽  
Wanlin Cao ◽  
Zongmin Zhang ◽  
Qiyun Qiao

2018 ◽  
Vol 15 (1) ◽  
pp. 59
Author(s):  
NAZRUL AZMI AHMAD ZAMRI ◽  
CLOTILDA PETRUS ◽  
AZMI IBRAHIM ◽  
HANIZAH AB HAMID

The application of concrete filled steel tubes (CFSTs) as composite members has widely been used around the world and is becoming popular day by day for structural application especially in earthquake regions. This paper indicates that an experimental study was conducted to comprehend the behaviour of T-stub end plates connected to concrete filled thin-walled steel tube (CFTST) with different types of bolts and are subjected to pullout load. The bolts used are normal type bolt M20 grade 8.8 and Lindapter Hollo-bolt HB16 and HB20. A series of 10 mm thick T-stub end plates were fastened to 2 mm CFTST of 200 mm x 200 mm in cross-section. All of the specimens were subjected to monotonic pull-out load until failure. Based on test results, the Lidapter Hollo-bolts showed better performance compare to normal bolts. The highest ultimate limit load for T-stub end plate fasten with Lindapter Hollo-bolt is four times higher than with normal bolt although all end plates show similar behaviour and failure mode patterns. It can be concluded that T-stub end plate with Lindapter Hollo-bolt shows a better performance in the service limit and ultimate limit states according to the regulations in the design codes.


2010 ◽  
Vol 163-167 ◽  
pp. 1574-1577 ◽  
Author(s):  
Tong Feng Zhao ◽  
Hong Nan Li ◽  
Jia Huan Yu

Moment-deformation curves of square steel tube filled with steel reinforced concrete subjected to bending load were simulated by the ABAQUS software. Calculated and experimental curves agreed well with each other. Through studying further the calculated member, the behavior of materials subjected to moment is given. Finally, flexural capacity formula of square steel tube filled with cross steel reinforced concrete is proposed.


2006 ◽  
Vol 06 (04) ◽  
pp. 457-474 ◽  
Author(s):  
M. A. BRADFORD ◽  
A. ROUFEGARINEJAD ◽  
Z. VRCELJ

Circular thin-walled elastic tubes under concentric axial loading usually fail by shell buckling, and in practical design procedures the buckling load can be determined by modifying the local buckling stress to account empirically for the imperfection sensitive response that is typical in Donnell shell theory. While the local buckling stress of a hollow thin-walled tube under concentric axial compression has a solution in closed form, that of a thin-walled circular tube with an elastic infill, which restrains the local buckling mode, has received far less attention. This paper addresses the local buckling of a tubular member subjected to axial compression, and formulates an energy-based technique for determining the local buckling stress as a function of the stiffness of the elastic infill by recourse to a transcendental equation. This simple energy formulation, with one degree of buckling freedom, shows that the elastic local buckling stress increases from 1 to [Formula: see text] times that of a hollow tube as the stiffness of the elastic infill increases from zero to infinity; the latter case being typical of that of a concrete-filled steel tube. The energy formulation is then recast into a multi-degree of freedom matrix stiffness format, in which the function for the buckling mode is a Fourier representation satisfying, a priori, the necessary kinematic condition that the buckling deformation vanishes at the point where it enters the elastic medium. The solution is shown to converge rapidly, and demonstrates that the simple transcendental formulation provides a sufficiently accurate representation of the buckling problem.


Sign in / Sign up

Export Citation Format

Share Document