Pulling Propellants Out of Thin Air: Demonstration of an End-to-End Mars In-Situ Propellant Production Unit

Author(s):  
John F. Connolly ◽  
Robert M. Zubrin
Keyword(s):  
Holzforschung ◽  
2017 ◽  
Vol 71 (9) ◽  
pp. 713-723 ◽  
Author(s):  
Francisco Arriaga ◽  
Daniel F. Llana ◽  
Miguel Esteban ◽  
Guillermo Íñiguez-González

Abstract The mechanical properties of timber can be estimated from wave propagation velocity by measuring wave time-of-flight (ToF). However, a time-lag complicates the measurements, which produces an apparent velocity dependency on length and this species and instrument dependent property is also influenced by knottiness. This research is dealing with time-lag determination by different sensor positioning in situ ToF measurements. ToF longitudinal measurements were conducted on 120 90 mm×140 mm specimens of the coniferous species radiata pine, Scots pine, laricio pine and maritime pine. The following commercially available acoustic devices were used: Sylvatest Duo, USLab, and Microsecond Timer. The sensors were arranged for the measurement types “end-to-end”, “on the same surface” and “on opposite surfaces”. ToF data were obtained from the full-length (4 m) specimens and then from the same specimens shortened to 3 m, 2 m and 1 m in length. The in situ procedures of ToF are applicable for a reliable length determination independently from the time-lag (tL) and velocity. The differences observed by end-to-end measurements, with respect to velocity, are below 4.4%. A velocity correction factor can be deduced for each instrument, which is independent of species.


2010 ◽  
Vol 6 (1) ◽  
pp. 970868 ◽  
Author(s):  
G. W. Eidson ◽  
S. T. Esswein ◽  
J. B. Gemmill ◽  
J. O. Hallstrom ◽  
T. R. Howard ◽  
...  

Water resources are under unprecedented strain. The combined effects of population growth, climate change, and rural industrialization have led to greater demand for an increasingly scarce resource. Ensuring that communities have adequate access to water—an essential requirement for community health and prosperity—requires finegrained management policies based on real-time in situ data, both environmental and hydrological. To address this requirement at the state level, we have developed the South Carolina Digital Watershed, an end-to-end system for monitoring water resources. In this paper, we describe the design and implementation of the core system components: (i) in situ sensing hardware, (ii) collection and uplink facilities, (iii) data streaming middleware, and (iv) back-end repository and presentation services. We conclude by discussing key organizational and technical challenges encountered during the development process.


2021 ◽  
Vol 8 ◽  
Author(s):  
Katie Winkle ◽  
Emmanuel Senft ◽  
Séverin Lemaignan

Participatory design (PD) has been used to good success in human-robot interaction (HRI) but typically remains limited to the early phases of development, with subsequent robot behaviours then being hardcoded by engineers or utilised in Wizard-of-Oz (WoZ) systems that rarely achieve autonomy. In this article, we present LEADOR (Led-by-Experts Automation and Design Of Robots), an end-to-end PD methodology for domain expert co-design, automation, and evaluation of social robot behaviour. This method starts with typical PD, working with the domain expert(s) to co-design the interaction specifications and state and action space of the robot. It then replaces the traditional offline programming or WoZ phase by an in situ and online teaching phase where the domain expert can live-program or teach the robot how to behave whilst being embedded in the interaction context. We point out that this live teaching phase can be best achieved by adding a learning component to a WoZ setup, which captures implicit knowledge of experts, as they intuitively respond to the dynamics of the situation. The robot then progressively learns an appropriate, expert-approved policy, ultimately leading to full autonomy, even in sensitive and/or ill-defined environments. However, LEADOR is agnostic to the exact technical approach used to facilitate this learning process. The extensive inclusion of the domain expert(s) in robot design represents established responsible innovation practice, lending credibility to the system both during the teaching phase and when operating autonomously. The combination of this expert inclusion with the focus on in situ development also means that LEADOR supports a mutual shaping approach to social robotics. We draw on two previously published, foundational works from which this (generalisable) methodology has been derived to demonstrate the feasibility and worth of this approach, provide concrete examples in its application, and identify limitations and opportunities when applying this framework in new environments.


2021 ◽  
Vol 13 (16) ◽  
pp. 3194
Author(s):  
Luke A. Brown ◽  
Fernando Camacho ◽  
Vicente García-Santos ◽  
Niall Origo ◽  
Beatriz Fuster ◽  
...  

With a wide range of satellite-derived vegetation bio-geophysical products now available to users, validation efforts are required to assess their accuracy and fitness for purpose. Substantial progress in the validation of such products has been made over the last two decades, but quantification of the uncertainties associated with in situ reference measurements is rarely performed, and the incorporation of uncertainties within upscaling procedures is cursory at best. Since current validation practices assume that reference data represent the truth, our ability to reliably demonstrate compliance with product uncertainty requirements through conformity testing is limited. The Fiducial Reference Measurements for Vegetation (FRM4VEG) project, initiated by the European Space Agency, is aiming to address this challenge by applying metrological principles to vegetation and surface reflectance product validation. Following FRM principles, and in accordance with the International Standards Organisation’s (ISO) Guide to the Expression of Uncertainty in Measurement (GUM), for the first time, we describe an end-to-end uncertainty evaluation framework for reference data of two key vegetation bio-geophysical variables: the fraction of absorbed photosynthetically active radiation (FAPAR) and canopy chlorophyll content (CCC). The process involves quantifying the uncertainties associated with individual in situ reference measurements and incorporating these uncertainties within the upscaling procedure (as well as those associated with the high-spatial-resolution imagery used for upscaling). The framework was demonstrated in two field campaigns covering agricultural crops (Las Tiesas–Barrax, Spain) and deciduous broadleaf forest (Wytham Woods, UK). Providing high-spatial-resolution reference maps with per-pixel uncertainty estimates, the framework is applicable to a range of other bio-geophysical variables including leaf area index (LAI), the fraction of vegetation cover (FCOVER), and canopy water content (CWC). The proposed procedures will facilitate conformity testing of moderate spatial resolution vegetation bio-geophysical products in future validation exercises.


2020 ◽  
Vol 2 (7) ◽  
pp. 2688-2692
Author(s):  
Ashish Kar ◽  
Varsha Thambi ◽  
Diptiranjan Paital ◽  
Saumyakanti Khatua

End-to-end assemblies of anisotropic plasmonic nanostructures with small nanogaps are of great interest as they create strong hot spots for enhancing weak fluorescence and/or scattering of molecules.


2021 ◽  
Vol 2 (2) ◽  
pp. 84
Author(s):  
Carolyn H. van der Bogert ◽  
Harald Hiesinger ◽  
Isacco Pretto ◽  
Floriano Venditti ◽  
Alexander Lewang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document