Influence of length and sensor positioning on acoustic time-of-flight (ToF) measurement in structural timber

Holzforschung ◽  
2017 ◽  
Vol 71 (9) ◽  
pp. 713-723 ◽  
Author(s):  
Francisco Arriaga ◽  
Daniel F. Llana ◽  
Miguel Esteban ◽  
Guillermo Íñiguez-González

Abstract The mechanical properties of timber can be estimated from wave propagation velocity by measuring wave time-of-flight (ToF). However, a time-lag complicates the measurements, which produces an apparent velocity dependency on length and this species and instrument dependent property is also influenced by knottiness. This research is dealing with time-lag determination by different sensor positioning in situ ToF measurements. ToF longitudinal measurements were conducted on 120 90 mm×140 mm specimens of the coniferous species radiata pine, Scots pine, laricio pine and maritime pine. The following commercially available acoustic devices were used: Sylvatest Duo, USLab, and Microsecond Timer. The sensors were arranged for the measurement types “end-to-end”, “on the same surface” and “on opposite surfaces”. ToF data were obtained from the full-length (4 m) specimens and then from the same specimens shortened to 3 m, 2 m and 1 m in length. The in situ procedures of ToF are applicable for a reliable length determination independently from the time-lag (tL) and velocity. The differences observed by end-to-end measurements, with respect to velocity, are below 4.4%. A velocity correction factor can be deduced for each instrument, which is independent of species.

Holzforschung ◽  
2019 ◽  
Vol 73 (4) ◽  
pp. 339-352 ◽  
Author(s):  
Francisco Arriaga ◽  
Joaquín Montón ◽  
Ignacio Bobadilla ◽  
Daniel F. Llana

AbstractTime-of-flight (ToF) measurements were conducted on twelve 76×226-mm2in cross-section, 4.52-m long specimens of Norway spruce timber pieces from a dismantled 19th-century building in Barcelona (Catalonia, Spain). Two commercially available acoustic devices were used: the USLab ultrasound device with conical 22 and 45 kHz sensors and the MicroSecond Timer (MST) stress wave device with spike sensors. ToF were obtained for the full-length (4.52 m) specimens in an end-to-end arrangement and for lengths of 0.5, 1, 1.5, 2, 3 and 4 m on the same surface and on opposite surfaces. The differences between the velocities obtained from end-to-end and semi-direct measurements were less than 4.5%. Apparent velocity dependence on length was observed in short-distance measurements. This could be corrected by determining a time lag (tL) from a linear regression between the ToF and the distance. Estimation of the modulus of elasticity (MOE) from the dynamic MOE (MOEdyn) is acceptable (r2=0.45–0.69) depending on the measurement procedure, and the best results forin situtimber are obtained in edge surface velocity. Although modulus of rupture (MOR) estimation from MOEdynimproves slightly when knottiness is included, it has low predictive capacity.


2020 ◽  
Author(s):  
Feifei Jia ◽  
Jie Wang ◽  
Yanyan Zhang ◽  
Qun Luo ◽  
Luyu Qi ◽  
...  

<p></p><p><i>In situ</i> visualization of proteins of interest at single cell level is attractive in cell biology, molecular biology and biomedicine, which usually involves photon, electron or X-ray based imaging methods. Herein, we report an optics-free strategy that images a specific protein in single cells by time of flight-secondary ion mass spectrometry (ToF-SIMS) following genetic incorporation of fluorine-containing unnatural amino acids as a chemical tag into the protein via genetic code expansion technique. The method was developed and validated by imaging GFP in E. coli and human HeLa cancer cells, and then utilized to visualize the distribution of chemotaxis protein CheA in E. coli cells and the interaction between high mobility group box 1 protein and cisplatin damaged DNA in HeLa cells. The present work highlights the power of ToF-SIMS imaging combined with genetically encoded chemical tags for <i>in situ </i>visualization of proteins of interest as well as the interactions between proteins and drugs or drug damaged DNA in single cells.</p><p></p>


2011 ◽  
Vol 52 (57) ◽  
pp. 291-300 ◽  
Author(s):  
Stefan Kern ◽  
Stefano Aliani

AbstractWintertime (April–September) area estimates of the Terra Nova Bay polynya (TNBP), Antarctica, based on satellite microwave radiometry are compared with in situ observations of water salinity, temperature and currents at a mooring in Terra Nova Bay in 1996 and 1997. In 1996, polynya area anomalies and associated anomalies in polynya ice production are significantly correlated with salinity anomalies at the mooring. Salinity anomalies lag area and/or ice production anomalies by about 3 days. Up to 50% of the variability in the salinity at the mooring position can be explained by area and/or ice production anomalies in the TNBP for April–September 1996. This value increases to about 70% when considering shorter periods like April–June or May–July, but reduces to 30% later, for example July–September, together with a slight increase in time lag. In 1997, correlations are smaller, less significant and occur at a different time lag. Analysis of ocean currents at the mooring suggests that in 1996 conditions were more favourable than in 1997 for observing the impact of descending plumes of salt-enriched water formed in the polynya during ice formation on the water masses at the mooring depth.


Author(s):  
Jiahao Chen ◽  
Ryota Nishimura ◽  
Norihide Kitaoka

Many end-to-end, large vocabulary, continuous speech recognition systems are now able to achieve better speech recognition performance than conventional systems. Most of these approaches are based on bidirectional networks and sequence-to-sequence modeling however, so automatic speech recognition (ASR) systems using such techniques need to wait for an entire segment of voice input to be entered before they can begin processing the data, resulting in a lengthy time-lag, which can be a serious drawback in some applications. An obvious solution to this problem is to develop a speech recognition algorithm capable of processing streaming data. Therefore, in this paper we explore the possibility of a streaming, online, ASR system for Japanese using a model based on unidirectional LSTMs trained using connectionist temporal classification (CTC) criteria, with local attention. Such an approach has not been well investigated for use with Japanese, as most Japanese-language ASR systems employ bidirectional networks. The best result for our proposed system during experimental evaluation was a character error rate of 9.87%.


2010 ◽  
Vol 6 (1) ◽  
pp. 970868 ◽  
Author(s):  
G. W. Eidson ◽  
S. T. Esswein ◽  
J. B. Gemmill ◽  
J. O. Hallstrom ◽  
T. R. Howard ◽  
...  

Water resources are under unprecedented strain. The combined effects of population growth, climate change, and rural industrialization have led to greater demand for an increasingly scarce resource. Ensuring that communities have adequate access to water—an essential requirement for community health and prosperity—requires finegrained management policies based on real-time in situ data, both environmental and hydrological. To address this requirement at the state level, we have developed the South Carolina Digital Watershed, an end-to-end system for monitoring water resources. In this paper, we describe the design and implementation of the core system components: (i) in situ sensing hardware, (ii) collection and uplink facilities, (iii) data streaming middleware, and (iv) back-end repository and presentation services. We conclude by discussing key organizational and technical challenges encountered during the development process.


2021 ◽  
Vol 8 ◽  
Author(s):  
Katie Winkle ◽  
Emmanuel Senft ◽  
Séverin Lemaignan

Participatory design (PD) has been used to good success in human-robot interaction (HRI) but typically remains limited to the early phases of development, with subsequent robot behaviours then being hardcoded by engineers or utilised in Wizard-of-Oz (WoZ) systems that rarely achieve autonomy. In this article, we present LEADOR (Led-by-Experts Automation and Design Of Robots), an end-to-end PD methodology for domain expert co-design, automation, and evaluation of social robot behaviour. This method starts with typical PD, working with the domain expert(s) to co-design the interaction specifications and state and action space of the robot. It then replaces the traditional offline programming or WoZ phase by an in situ and online teaching phase where the domain expert can live-program or teach the robot how to behave whilst being embedded in the interaction context. We point out that this live teaching phase can be best achieved by adding a learning component to a WoZ setup, which captures implicit knowledge of experts, as they intuitively respond to the dynamics of the situation. The robot then progressively learns an appropriate, expert-approved policy, ultimately leading to full autonomy, even in sensitive and/or ill-defined environments. However, LEADOR is agnostic to the exact technical approach used to facilitate this learning process. The extensive inclusion of the domain expert(s) in robot design represents established responsible innovation practice, lending credibility to the system both during the teaching phase and when operating autonomously. The combination of this expert inclusion with the focus on in situ development also means that LEADOR supports a mutual shaping approach to social robotics. We draw on two previously published, foundational works from which this (generalisable) methodology has been derived to demonstrate the feasibility and worth of this approach, provide concrete examples in its application, and identify limitations and opportunities when applying this framework in new environments.


Sign in / Sign up

Export Citation Format

Share Document