Design, Pipe Material Selection, and Manufacture for the Lake Texoma Outfall Raw Water Pipeline: Genesis of a Fast-Paced Large-Diameter Project

Author(s):  
Scott Maughn ◽  
Shah Rahman ◽  
Manish Nawal ◽  
Mike Sechelski ◽  
William Ast
2011 ◽  
Vol 2 (2) ◽  
pp. 307-319
Author(s):  
F. Van den Abeele ◽  
M. Di Biagio ◽  
L. Amlung

One of the major challenges in the design of ultra high grade (X100) gas pipelines is the identification of areliable crack propagation strategy. Recent research results have shown that the newly developed highstrength and large diameter gas pipelines, when operated at severe conditions, may not be able to arrest arunning ductile crack through pipe material properties. Hence, the use of crack arrestors is required in thedesign of safe and reliable pipeline systems.A conventional crack arrestor can be a high toughness pipe insert, or a local joint with higher wall thickness.According to experimental results of full-scale burst tests, composite crack arrestors are one of the mostpromising technologies. Such crack arrestors are made of fibre reinforced plastics which provide the pipewith an additional hoop constraint. In this paper, numerical tools to simulate crack initiation, propagationand arrest in composite crack arrestors are introduced.First, the in-use behaviour of composite crack arrestors is evaluated by means of large scale tensile testsand four point bending experiments. The ability of different stress based orthotropic failure measures topredict the onset of material degradation is compared. Then, computational fracture mechanics is applied tosimulate ductile crack propagation in high pressure gas pipelines, and the corresponding crack growth inthe composite arrestor. The combination of numerical simulation and experimental research allows derivingdesign guidelines for composite crack arrestors.


Author(s):  
Martin McLamb ◽  
Phil Hopkins ◽  
Mark Marley ◽  
Maher Nessim

Oil and gas majors are interested in several projects worldwide involving large diameter, long distance gas pipelines that pass through remote locations. Consequently, the majors are investigating the feasibility of operating pipelines of this type at stress levels up to and including 80% of the specified minimum yield strength (SMYS) of the pipe material. This paper summarises a study to investigate the impact upon safety, reliability and integrity of designing and operating pipelines to stresses up to 80% SMYS.


2020 ◽  
Author(s):  
Matt Gaughan ◽  
Robert Allen ◽  
Charles Cameron ◽  
Bill Fields ◽  
Shelly Hattan ◽  
...  

2002 ◽  
Vol 69 (3) ◽  
pp. 283-291 ◽  
Author(s):  
S. Towfighi ◽  
T. Kundu ◽  
M. Ehsani

Ultrasonic nondestructive inspection of large-diameter pipes is important for health monitoring of ailing infrastructure. Longitudinal stress-corrosion cracks are detected more efficiently by inducing circumferential waves; hence, the study of elastic wave propagation in the circumferential direction in a pipe wall is essential. The current state of knowledge lacks a complete solution of this problem. Only when the pipe material is isotropic a solution of the wave propagation problem in the circumferential direction exists. Ultrasonic inspections of reinforced concrete pipes and pipes retrofitted by fiber composites necessitate the development of a new theoretical solution for elastic wave propagation in anisotropic curved plates in the circumferential direction. Mathematical modeling of the problem to obtain dispersion curves for curved anisotropic plates leads to coupled differential equations. Unlike isotropic materials for which the Stokes-Helmholtz decomposition technique simplifies the problem, in anisotropic case no such general decomposition technique works. These coupled differential equations are solved in this paper. Dispersion curves for anisotropic curved plates of different curvatures have been computed and presented. Some numerical results computed by the new technique have been compared with those available in the literature.


Author(s):  
Rhett Dotson ◽  
Chris Alexander ◽  
Ashwin Iyer ◽  
Al Gourlie ◽  
Richard Kania

In this paper, a methodology is presented to develop load factors for use in elastic-plastic assessments of pipelines and their components. The load factors are based on the pipe material properties and the ASME pipeline code’s design margin for the service and location of the pipeline installation [1, 2]. These codes are recognized by 49 CFR 192 and 195 [3, 4]. Minimum required load factors for internal pressure loads can be derived analytically based on design equations from the ASME B31 piping codes and minimum material requirements for API 5L line pipe [6]. Once the load factor is established for a particular case, the elastic-plastic methodology may be used in the Finite Element Analysis (FEA) of pipelines and related components. This methodology is particularly useful in the assessment of existing systems when linear elastic numerical analysis shows that local stresses may exceed the elastic design limits. Two case studies are presented showing analyses performed with Abaqus [5], a commercial, general purpose FEA software package. The first case study provides an assessment of a large diameter elbow where the stress on the outer fibers of the intrados exceeded the longitudinal stress limits from B31.8. The second case study examines an assessment of a tee connection where the stresses on the ID exceeded the yield strength of the component. In addition to the case studies, the paper also presents the results of a full-scale test that demonstrated what margin was present when the numerical calculations were based on specified minimum properties. This paper is not intended to revise or replace any provision of B31.4 and/or B31.8 [1, 2]. Instead, it provides the means for calculating load factors that can be used with an elastic-plastic analysis approach in a manner that provides the same design margins as the ASME B31 codes. The approach described in this paper is intended for use in the detailed FEA of pipelines and their associated components.


2021 ◽  
Vol 11 (21) ◽  
pp. 10186
Author(s):  
Jin Yu ◽  
Chonghong Ren ◽  
Yanyan Cai ◽  
Jian Chen ◽  
Yuanqing Wang ◽  
...  

How to control deformation and avoid resonance is the key to ensuring the safety of the super-long pipeline when it is floating in the sea. Based on the deformation warning value of pipeline prototype composite material obtained from laboratory tests, the raw water pipeline project in Tong’an Xiamen adopts wireless communication equipment to transmit data, supplemented by aerial photography technology to monitor and feedback the strain and vibration during the dynamic construction of long-distance pipeline floating transportation. Combined with dynamic construction, this monitoring method avoids excessive deformation and resonance of the steel pipeline during floating transportation, and prevents the destruction of the anticorrosive coating. The airtightness test after completion shows that the whole pipeline meets the acceptance requirements. The monitoring results show that the strain at the bent position of the pipeline is large in the process of floating transportation, and the jacking speed and position of the tugboats have an important influence on the deformation of the pipeline. The same type of project should focus on these aspects and timely feedback monitoring data. At the same time, the study also provides detailed strain, modal analysis and effective monitoring technology for the safety of offshore steel pipeline floating transportation.


Sign in / Sign up

Export Citation Format

Share Document