Impacts of Soil Texture, Structure, and Compaction on Bioinfiltration Device Performance: Results of Lab and Field Investigations

Author(s):  
Redahegn Sileshi ◽  
Robert Pitt ◽  
Shirley Clark
1996 ◽  
Vol 423 ◽  
Author(s):  
L. S. Rea

AbstractThe Department of Defense (DoD) is investing in the development of Silicon Carbide (SiC) for a wide range of applications. Over the past year, SiC technology has demonstrated excellent device performance results for power devices, high temperature electronic devices and microwave devices. The materials growth and processing technology for SiC is now at a level of sufficient maturity to support substantial device development efforts. While there is still considerable materials and device research required for SiC to achieve it's full potential, the fundamental technology has been proven for several critical applications. A perspective on some Air Force device performance requirements will be presented. The status of SiC materials development, material limits to advances in device performance and issues relating to supporting technology will also be discussed.


Author(s):  
Marylyn Bennett-Lilley ◽  
Thomas T.H. Fu ◽  
David D. Yin ◽  
R. Allen Bowling

Chemical Vapor Deposition (CVD) tungsten metallization is used to increase VLSI device performance due to its low resistivity, and improved reliability over other metallization schemes. Because of its conformal nature as a blanket film, CVD-W has been adapted to multiple levels of metal which increases circuit density. It has been used to fabricate 16 MBIT DRAM technology in a manufacturing environment, and is the metallization for 64 MBIT DRAM technology currently under development. In this work, we investigate some sources of contamination. One possible source of contamination is impurities in the feed tungsten hexafluoride (WF6) gas. Another is particle generation from the various reactor components. Another generation source is homogeneous particle generation of particles from the WF6 gas itself. The purpose of this work is to investigate and analyze CVD-W process-generated particles, and establish a particle characterization methodology.


Author(s):  
F. M. Ross ◽  
R. Hull ◽  
D. Bahnck ◽  
J. C. Bean ◽  
L. J. Peticolas ◽  
...  

We describe an investigation of the electrical properties of interfacial dislocations in strained layer heterostructures. We have been measuring both the structural and electrical characteristics of strained layer p-n junction diodes simultaneously in a transmission electron microscope, enabling us to correlate changes in the electrical characteristics of a device with the formation of dislocations.The presence of dislocations within an electronic device is known to degrade the device performance. This degradation is of increasing significance in the design and processing of novel strained layer devices which may require layer thicknesses above the critical thickness (hc), where it is energetically favourable for the layers to relax by the formation of misfit dislocations at the strained interfaces. In order to quantify how device performance is affected when relaxation occurs we have therefore been investigating the electrical properties of dislocations at the p-n junction in Si/GeSi diodes.


Author(s):  
T.C. Sheu ◽  
S. Myhajlenko ◽  
D. Davito ◽  
J.L. Edwards ◽  
R. Roedel ◽  
...  

Liquid encapsulated Czochralski (LEC) semi-insulating (SI) GaAs has applications in integrated optics and integrated circuits. Yield and device performance is dependent on the homogeniety of the wafers. Therefore, it is important to characterise the uniformity of the GaAs substrates. In this respect, cathodoluminescence (CL) has been used to detect the presence of crystal defects and growth striations. However, when SI GaAs is examined in a scanning electron microscope (SEM), there will be a tendency for the surface to charge up. The surface charging affects the backscattered and secondary electron (SE) yield. Local variations in the surface charge will give rise to contrast (effectively voltage contrast) in the SE image. This may be associated with non-uniformities in the spatial distribution of resistivity. Wakefield et al have made use of “charging microscopy” to reveal resistivity variations across a SI GaAs wafer. In this work we report on CL imaging, the conditions used to obtain “charged” SE images and some aspects of the contrast behaviour.


2017 ◽  
Vol 16 (2) ◽  
pp. 61-76 ◽  
Author(s):  
Anaïs Thibault Landry ◽  
Marylène Gagné ◽  
Jacques Forest ◽  
Sylvie Guerrero ◽  
Michel Séguin ◽  
...  

Abstract. To this day, researchers are debating the adequacy of using financial incentives to bolster performance in work settings. Our goal was to contribute to current understanding by considering the moderating role of distributive justice in the relation between financial incentives, motivation, and performance. Based on self-determination theory, we hypothesized that when bonuses are fairly distributed, using financial incentives makes employees feel more competent and autonomous, which in turn fosters greater autonomous motivation and lower controlled motivation, and better work performance. Results from path analyses in three samples supported our hypotheses, suggesting that the effect of financial incentives is contextual, and that compensation plans using financial incentives and bonuses can be effective when properly managed.


Sign in / Sign up

Export Citation Format

Share Document