Effect of back‐surface polycrystalline silicon layer on oxygen precipitation in Czochralski silicon wafers

1989 ◽  
Vol 54 (18) ◽  
pp. 1748-1750 ◽  
Author(s):  
Hideki Shirai ◽  
Akira Yamaguchi ◽  
Fumio Shimura
1997 ◽  
Vol 144 (3) ◽  
pp. 1111-1120 ◽  
Author(s):  
Koji Sueoka ◽  
Masanori Akatsuka ◽  
Hisashi Katahama ◽  
Naoshi Adachi

2015 ◽  
Vol 242 ◽  
pp. 135-140 ◽  
Author(s):  
Vladimir V. Voronkov ◽  
Robert Falster

Rapid thermal annealing (RTA) of Czochralski silicon wafers at around 1260°C installs a depth profile of some vacancy species. Subsequent oxygen precipitation in such wafers is vacancy-assisted. The data on RTA-installed vacancy profiles - and the corresponding precipitate density profiles - suggest that there is a slow-diffusing vacancy species (Vs) along with two fast-diffusing species: a Watkins vacancy (Vw) manifested in irradiation experiments and fast vacancy (Vf) responsible for the high-T vacancy contribution into self-diffusion. The Vs species are lost during cooling stage of RTA, and the loss seems to occur by conversion of Vs into Vf followed by a quick out-diffusion of Vf. A model based on this scenario provides a good fit to the reported profiles of oxide precipitate density in RTA wafers for different values of TRTA and different cooling rates.


2011 ◽  
Vol 178-179 ◽  
pp. 249-252 ◽  
Author(s):  
Xiang Yang Ma ◽  
Li Ming Fu ◽  
De Ren Yang

Oxygen precipitation (OP) behaviors were investigated for Czochralski (Cz) silicon wafers, which were coated with silicon nitride (SiNx) films or not, subjected to two-step anneal of 800C/4 h+1000°C/16 h following rapid thermal processing (RTP) at different temperatures ranging from 1150 to 1250C for 50 s. It was found that OP in the Cz silicon wafers coated with SiNx films was stronger in each case. This was because that nitrogen atoms diffused into bulk of Cz silicon wafer from the surface coated SiNx film during the high temperature RTP. Furthermore, it was proved that the RTP lamp irradiation facilitated the in-diffusion of nitrogen atoms, which was most likely due to that the ultraviolet light enhanced the breakage of silicon-nitrogen bonds.


2011 ◽  
Vol 159 (2) ◽  
pp. H125-H129 ◽  
Author(s):  
P. K. Kulshreshtha ◽  
YoHan Yoon ◽  
K.M. Youssef ◽  
E.A. Good ◽  
G. Rozgonyi

2006 ◽  
Vol 376-377 ◽  
pp. 169-172 ◽  
Author(s):  
Ling Zhong ◽  
Xiangyang Ma ◽  
Daxi Tian ◽  
Deren Yang

2005 ◽  
Vol 864 ◽  
Author(s):  
Q. Wang ◽  
Manmohan Daggubati ◽  
Hossein Paravi ◽  
Rong Yu ◽  
Xiao Feng Zhang

AbstractThe precipitation of interstitial oxygen (Oi) in heavily arsenic doped Czochralski (CZ) silicon wafers (As-wafer) has been studied for both polysilicon and damaged back surfaces. After annealed at 1200°C for 45 minutes and 950°C for 15hrs sequentially, the As-wafers with polysilicon show no Oi precipitation in the bulk while polyhedral Oi precipitates are observed at the interface between polysilicon and the silicon substrate. They exhibit a habit plane of {100}. The lack of the Oi precipitation in the bulk may reduce the total gettering efficiency of the polysilicon layer on the As-wafer. The same annealing led to rod-like SiOx precipitates in the wafers with damaged back surface. These precipitates extended about 1um into the bulk and had a habit plane of {111}. This morphology has high interfacial energy and is only possible when strain relief is dominant. The Oi outdiffusion has been observed to be same for both backside surface conditions and is only determined by annealing process.


Sign in / Sign up

Export Citation Format

Share Document