Deposition probe technique for the determination of film thickness uniformity

1998 ◽  
Vol 69 (9) ◽  
pp. 3353-3356 ◽  
Author(s):  
M. M. M. Bilek ◽  
I. G. Brown
2001 ◽  
Vol 671 ◽  
Author(s):  
Michael Gostein ◽  
Paul Lefevre ◽  
Alex A. Maznev ◽  
Michael Joffe

ABSTRACTWe discuss applications of optoacoustic film thickness metrology for characterization of copper chemical-mechanical polishing (CMP). We highlight areas where the use of optoacoustics for CMP characterization provides data complementary to that obtained by other techniques because of its ability to directly measure film thickness with high spatial resolution in a rapid, non-destructive manner. Examples considered include determination of planarization length, measurement of film thickness at intermediate stages of polish, and measurement of arrays of metal lines.


Author(s):  
H van Leeuwen

The pressure—viscosity coefficient is an indispensable property in the elastohydrodynamic (EHD) lubrication of hard contacts, but often not known. A guess will easily lead to enormous errors in the film thickness. This article describes a method to deduct this coefficient by adapting the value of the pressure—viscosity coefficient until the differences between accurate film thickness approxi-mation values and accurate film thickness measurements over a wide range of values are at a minimum. Eleven film thickness approximation formulas are compared in describing the film thickness of a test fluid with known value of the pressure—viscosity coefficient. The measurement method is based on spacer layer interferometry. It is concluded that for circular contacts the newer more versatile expressions are not better than some older approximations, which are limited to a smaller region of conditions, and that the older fits are as least as appropriate to find the pressure—viscosity coefficient of fluids, in spite of the limited data where they have been based on.


2021 ◽  
Author(s):  
Wassim Habchi ◽  
Philippe Vergne

Abstract The current work presents a quantitative approach for the prediction of minimum film thickness in elastohydrodynamic lubricated (EHL) circular contacts. In contrast to central film thickness, minimum film thickness can be hard to accurately measure, and it is usually poorly estimated by classical analytical film thickness formulae. For this, an advanced finite-element-based numerical model is used to quantify variations of the central-to-minimum film thickness ratio with operating conditions, under isothermal Newtonian pure-rolling conditions. An ensuing analytical expression is then derived and compared to classical film thickness formulae and to more recent similar expressions. The comparisons confirmed the inability of the former to predict the minimum film thickness, and the limitations of the latter, which tend to overestimate the ratio of central-to-minimum film thickness. The proposed approach is validated against numerical results as well as experimental data from the literature, revealing an excellent agreement with both. This framework can be used to predict minimum film thickness in circular elastohydrodynamic contacts from knowledge of central film thickness, which can be either accurately measured or rather well estimated using classical film thickness formulae.


Sign in / Sign up

Export Citation Format

Share Document