Exact solution of the Dirac equation for a spin-12 charged particle in two-dimensional and three-dimensional Euclidean spaces with shape invariance symmetry

2001 ◽  
Vol 42 (6) ◽  
pp. 2416-2437 ◽  
Author(s):  
H. Fakhri ◽  
N. Abbasi
Author(s):  
Е.С. Воропаева ◽  
К.В. Вшивков ◽  
Л.В. Вшивкова ◽  
Г.И. Дудникова ◽  
А.А. Ефимова

В настоящей работе представлен новый метод решения уравнений движения заряженных частиц в электромагнитных полях и проведено его сравнение с различными известными модификациями метода Бориса. Созданные двумерный и трехмерный алгоритмы основаны на использовании точного решения дифференциального уравнения для скорости заряженной частицы на шаге по времени. Сравнительный анализ метода Бориса и его модификаций проводился как по точности методов, так и по времени их работы. Новая модификация метода Бориса позволяет точнее вычислять траекторию и скорость заряженной частицы без значительного увеличения сложности расчетов. Показано, что при выборе модификации метода Бориса для решения задачи в первую очередь следует обращать внимание на точность решения, так как более простая и быстрая схема может не дать выигрыша по времени. The article proposes a new method for solving the equations of motion of charged particles in electromagnetic fields and compares this method with various known modifications of the Boris method. The created two-dimensional and three-dimensional algorithms are based on the use of an exact solution of the differential equation for the velocity of a charged particle at a time step. A comparative analysis of the Boris method and its modifications was carried out both in terms of the accuracy of the methods and the time of their operation. A new modification of the Boris method allows more accurate calculations of the trajectory and velocity of a charged particle without a significant increase in the complexity of calculations. It is shown that, when choosing a modification of the Boris method to solve a problem, one should pay attention first of all to the accuracy of the solution, since a simpler and faster scheme may not give a gain in time.


1969 ◽  
Vol 3 (2) ◽  
pp. 255-267 ◽  
Author(s):  
M. P. Srivastava ◽  
P. K. Bhat

We have studied the behaviour of a charged particle in an axially symmetric magnetic field having a neutral point, so as to find a possibility of confining a charged particle in a thermonuclear device. In order to study the motion we have reduced a three-dimensional motion to a two-dimensional one by introducing a fictitious potential. Following Schmidt we have classified the motion, as an ‘off-axis motion’ and ‘encircling motion’ depending on the behaviour of this potential. We see that the particle performs a hybrid type of motion in the negative z-axis, i.e. at some instant it is in ‘off-axis motion’ while at another instant it is in ‘encircling motion’. We have also solved the equation of motion numerically and the graphs of the particle trajectory verify our analysis. We find that in most of the cases the particle is contained. The magnetic moment is found to be moderately adiabatic.


1984 ◽  
Vol 62 (7) ◽  
pp. 632-638
Author(s):  
J. G. Williams

The exact solution of the Feynman checkerboard model is given both in terms of the hypergeometric series and in terms of Jacobi polynomials. It is shown how this leads, in the continuous limit, to the Dirac equation in two-dimensional space-time.


2006 ◽  
Vol 5-6 ◽  
pp. 541-550 ◽  
Author(s):  
J.R. Barber

Classical methods of two-dimensional elasticity can be extended to give an exact solution of the three-dimensional problem for the beam — i.e. a general solution for the pris- matic bar loaded on its lateral surfaces, subject only to the restriction that the tractions can be expanded as power series in the axial coordinate z. A series of sub-problems Pj is defined by successive partial differentiations with respect to z. For isotropic materials, a recursive al- gorithm can be used for generating the solution to Pj+1 from that for Pj in the context of the Papkovich-Neuber solution. For the generally anisotropic material, a similar strategy is proposed, based on partial integrations of Stroh’s formulation of the two-dimensional problem.


Aerospace ◽  
2004 ◽  
Author(s):  
Wenbin Yu

An improved Reissner-Mindlin theory for composite laminates without invoking ad hoc kinematic assumptions is constructed using the variational-asymptotic method. Instead of assuming a priori the distribution of three-dimensional displacements in terms of two-dimensional plate displacements as what is usually done in typical plate theories, an exact intrinsic formulation has been achieved by introducing unknown three-dimensional warping functions. Then the variational-asymptotic method is applied to systematically decouple the original three-dimensional problem into a one-dimensional through-the-thickness analysis and a two-dimensional plate analysis. The resulting theory is an equivalent single-layer Reissner-Mindlin theory with an excellent accuracy comparable to that of higher-order, layerwise theories. The present work is extended from the previous theory developed by the writer and his co-workers with two sizable contributions: (a) six more constants (33 in total) are introduced to allow maximum freedom to transform the asymptotically correct energy into a Reissner-Mindlin model; and (b) the semi-definite programming technique is used to seek the optimum Reissner-Mindlin model. Furthermore, it is proved the first time that the recovered three-dimensional quantities exactly satisfy the continuity conditions on the interface between different layers and traction boundary conditions on the bottom and top surfaces. It is also shown that that two of the equilibrium equations of three-dimensional elasticity can be satisfied asymptotically, and the third one can be satisfied approximately so that the difference between the Reissner-Mindlin model and the second order asymptotical energy can be minimized. Numerical examples are presented to compare with the exact solution as well as the classical lamination theory and first-order shear-deformation, demonstrating that the present theory has an excellent agreement with the exact solution.


Author(s):  
H.A. Cohen ◽  
T.W. Jeng ◽  
W. Chiu

This tutorial will discuss the methodology of low dose electron diffraction and imaging of crystalline biological objects, the problems of data interpretation for two-dimensional projected density maps of glucose embedded protein crystals, the factors to be considered in combining tilt data from three-dimensional crystals, and finally, the prospects of achieving a high resolution three-dimensional density map of a biological crystal. This methodology will be illustrated using two proteins under investigation in our laboratory, the T4 DNA helix destabilizing protein gp32*I and the crotoxin complex crystal.


Author(s):  
B. Ralph ◽  
A.R. Jones

In all fields of microscopy there is an increasing interest in the quantification of microstructure. This interest may stem from a desire to establish quality control parameters or may have a more fundamental requirement involving the derivation of parameters which partially or completely define the three dimensional nature of the microstructure. This latter categorey of study may arise from an interest in the evolution of microstructure or from a desire to generate detailed property/microstructure relationships. In the more fundamental studies some convolution of two-dimensional data into the third dimension (stereological analysis) will be necessary.In some cases the two-dimensional data may be acquired relatively easily without recourse to automatic data collection and further, it may prove possible to perform the data reduction and analysis relatively easily. In such cases the only recourse to machines may well be in establishing the statistical confidence of the resultant data. Such relatively straightforward studies tend to result from acquiring data on the whole assemblage of features making up the microstructure. In this field data mode, when parameters such as phase volume fraction, mean size etc. are sought, the main case for resorting to automation is in order to perform repetitive analyses since each analysis is relatively easily performed.


Author(s):  
Yu Liu

The image obtained in a transmission electron microscope is the two-dimensional projection of a three-dimensional (3D) object. The 3D reconstruction of the object can be calculated from a series of projections by back-projection, but this algorithm assumes that the image is linearly related to a line integral of the object function. However, there are two kinds of contrast in electron microscopy, scattering and phase contrast, of which only the latter is linear with the optical density (OD) in the micrograph. Therefore the OD can be used as a measure of the projection only for thin specimens where phase contrast dominates the image. For thick specimens, where scattering contrast predominates, an exponential absorption law holds, and a logarithm of OD must be used. However, for large thicknesses, the simple exponential law might break down due to multiple and inelastic scattering.


Author(s):  
D. E. Johnson

Increased specimen penetration; the principle advantage of high voltage microscopy, is accompanied by an increased need to utilize information on three dimensional specimen structure available in the form of two dimensional projections (i.e. micrographs). We are engaged in a program to develop methods which allow the maximum use of information contained in a through tilt series of micrographs to determine three dimensional speciman structure.In general, we are dealing with structures lacking in symmetry and with projections available from only a limited span of angles (±60°). For these reasons, we must make maximum use of any prior information available about the specimen. To do this in the most efficient manner, we have concentrated on iterative, real space methods rather than Fourier methods of reconstruction. The particular iterative algorithm we have developed is given in detail in ref. 3. A block diagram of the complete reconstruction system is shown in fig. 1.


Sign in / Sign up

Export Citation Format

Share Document