Effects of stress on electrical transport properties of nickel silicide thin layers synthesized by Ni-ion implantation

2002 ◽  
Vol 92 (7) ◽  
pp. 3778-3783 ◽  
Author(s):  
X. W. Zhang ◽  
S. P. Wong ◽  
W. Y. Cheung
2000 ◽  
Vol 611 ◽  
Author(s):  
X. W. Zhang ◽  
S. P. Wong ◽  
W. Y. Cheung ◽  
F. Zhang

ABSTRACTNickel disilicide layers were prepared by nickel ion implantation into silicon substrates using a metal vapor vacuum arc ion source at various beam current densities to an ion dose of 6×1017 cm−2. Characterization of the as-implanted and annealed samples was performed using Rutherford backscattering spectrometry, x-ray diffraction, electrical resistivity and Hall effect measurements. The temperature dependence of the sheet resistivity and the Hall mobility from 30 to 400 K showed peculiar peak and valley features varying from sample to sample. A two-band model was proposed to explain the observed electrical transport properties.


2021 ◽  
Author(s):  
Dongha Shin ◽  
Hwa Rang Kim ◽  
Byung Hee Hong

Since of its first discovery, graphene has attracted much attention because of the unique electrical transport properties that can be applied to high-performance field-effect transistor (FET). However, mounting chemical functionalities...


Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 746
Author(s):  
Meiling Hong ◽  
Lidong Dai ◽  
Haiying Hu ◽  
Xinyu Zhang

A series of investigations on the structural, vibrational, and electrical transport characterizations for Ga2Se3 were conducted up to 40.2 GPa under different hydrostatic environments by virtue of Raman scattering, electrical conductivity, high-resolution transmission electron microscopy, and atomic force microscopy. Upon compression, Ga2Se3 underwent a phase transformation from the zinc-blende to NaCl-type structure at 10.6 GPa under non-hydrostatic conditions, which was manifested by the disappearance of an A mode and the noticeable discontinuities in the pressure-dependent Raman full width at half maximum (FWHMs) and electrical conductivity. Further increasing the pressure to 18.8 GPa, the semiconductor-to-metal phase transition occurred in Ga2Se3, which was evidenced by the high-pressure variable-temperature electrical conductivity measurements. However, the higher structural transition pressure point of 13.2 GPa was detected for Ga2Se3 under hydrostatic conditions, which was possibly related to the protective influence of the pressure medium. Upon decompression, the phase transformation and metallization were found to be reversible but existed in the large pressure hysteresis effect under different hydrostatic environments. Systematic research on the high-pressure structural and electrical transport properties for Ga2Se3 would be helpful to further explore the crystal structure evolution and electrical transport properties for other A2B3-type compounds.


Sign in / Sign up

Export Citation Format

Share Document