Relaxation Time for Reactions behind Shock Waves and Shock Wave Profiles

1958 ◽  
Vol 1 (3) ◽  
pp. 242 ◽  
Author(s):  
Russell E. Duff
1970 ◽  
Vol 48 (18) ◽  
pp. 2860-2865 ◽  
Author(s):  
J. K. K. Ip ◽  
George Burns

Computational studies of Br2 shock wave dissociation in argon were conducted, and the possibility of vibrational relaxation–dissociation coupling, stronger than previously suspected (2), was investigated. In order for such a coupling to occur, the vibrational temperature in the lower vibrational levels of Br2 must be lower than that in the higher vibrational levels. The approximate shapes of vibrational distribution functions were obtained, and corresponding shock wave profiles were computed. The calculations predict an appreciable difference between the translational and vibrational temperatures of the dissociating Br2. In order to check this conclusion, the Br2 absorption coefficients at 440 mμ, measured at equilibrium by heating Br2 in a furnace from 300 to 1250°K, were compared to the absorption coefficients measured in shock waves.


Author(s):  
M.A. Mogilevsky ◽  
L.S. Bushnev

Single crystals of Al were loaded by 15 to 40 GPa shock waves at 77 K with a pulse duration of 1.0 to 0.5 μs and a residual deformation of ∼1%. The analysis of deformation structure peculiarities allows the deformation history to be re-established.After a 20 to 40 GPa loading the dislocation density in the recovered samples was about 1010 cm-2. By measuring the thickness of the 40 GPa shock front in Al, a plastic deformation velocity of 1.07 x 108 s-1 is obtained, from where the moving dislocation density at the front is 7 x 1010 cm-2. A very small part of dislocations moves during the whole time of compression, i.e. a total dislocation density at the front must be in excess of this value by one or two orders. Consequently, due to extremely high stresses, at the front there exists a very unstable structure which is rearranged later with a noticeable decrease in dislocation density.


2014 ◽  
Vol 10 ◽  
pp. 27-31
Author(s):  
R.Kh. Bolotnova ◽  
U.O. Agisheva ◽  
V.A. Buzina

The two-phase model of vapor-gas-liquid medium in axisymmetric two-dimensional formulation, taking into account vaporization is constructed. The nonstationary processes of boiling vapor-water mixture outflow from high-pressure vessels as a result of depressurization are studied. The problems of shock waves action on filled by gas-liquid mixture volumes are solved.


2021 ◽  
Vol 11 (11) ◽  
pp. 4736
Author(s):  
Saleh Baqer ◽  
Dimitrios J. Frantzeskakis ◽  
Theodoros P. Horikis ◽  
Côme Houdeville ◽  
Timothy R. Marchant ◽  
...  

The structure of optical dispersive shock waves in nematic liquid crystals is investigated as the power of the optical beam is varied, with six regimes identified, which complements previous work pertinent to low power beams only. It is found that the dispersive shock wave structure depends critically on the input beam power. In addition, it is known that nematic dispersive shock waves are resonant and the structure of this resonance is also critically dependent on the beam power. Whitham modulation theory is used to find solutions for the six regimes with the existence intervals for each identified. These dispersive shock wave solutions are compared with full numerical solutions of the nematic equations, and excellent agreement is found.


1996 ◽  
Vol 14 (2) ◽  
pp. 157-169 ◽  
Author(s):  
Yuan Gu ◽  
Sizu Fu ◽  
Jiang Wu ◽  
Songyu Yu ◽  
Yuanlong Ni ◽  
...  

The experimental progress of laser equation of state (EOS) studies at Shanghai Institute of Laser Plasma (SILP) is discussed in this paper. With a unique focal system, the uniformity of the laser illumination on the target surface is improved and a laser-driven shock wave with good spatial planarity is obtained. With an inclined aluminum target plane, the stability of shock waves are studied, and the corresponding thickness range of the target of laser-driven shock waves propagating steadily are given. The shock adiabats of Cu, Fe, SiO2 are experimentally measured. The pressure in the material is heightened remarkably with the flyer increasing pressure, and the effect of the increasing pressure is observed. Also, the high-pressure shock wave is produced and recorded in the experimentation of indirect laser-driven shock waves with the hohlraum target.


2007 ◽  
Vol 22 (10) ◽  
pp. 1875-1898 ◽  
Author(s):  
ORHAN DÖNMEZ

We investigate the special cases of the formation of shocks in the accretion disks around the nonrotating (Schwarzschild) black holes in cases where one or few stars perturb the disk. We model the structure of disk with a 2D fully general relativistic hydrodynamic code and investigate a variety of cases in which the stars interacting with the disk are captured at various locations. We have found the following results: (1) if the stars perturb the disk at nonsymmetric locations, a moving one-armed spiral shock wave is produced and it destroys the disk eventually; (2) if the disk is perturbed by a single star located close to the black hole, a standing shock wave is produced while the disk becomes an accretion tori; (3) if the disk is perturbed by stars at symmetric locations, moving two-armed spiral shock waves are produced while the disk reaches a steady state; (4) continuous injection of matter into the stable disk produces a standing shock wave behind the black hole. Our outcomes reinforce the view that different perturbations on the stable accretion disk carry out different types of shock waves which produce Quasi-Periodic Oscillation (QPO) phenomena in galactic black hole candidates and it is observed as a X-ray.


2013 ◽  
Vol 380-384 ◽  
pp. 1725-1728
Author(s):  
Yang Hu ◽  
Huai Yu Kang

In this paper, we Research on Propagation Numerical Simulation and damage effect of Blast Shock Waves in Subway Station by using LS-DYNA dynamic finite element calculation program , the results reproduce the formation process of the explosive flow field, and analysis the shock wave waveform, attenuation and walking pattern, provides the theoretical basis for further experimental study.


2000 ◽  
Vol 62 (5) ◽  
pp. 6648-6666 ◽  
Author(s):  
F. J. Uribe ◽  
R. M. Velasco ◽  
L. S. García-Colín ◽  
E. Díaz-Herrera
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document