Explosion dynamics of dusty plasma liquids induced by laser ablation on suspended dust particles

2006 ◽  
Vol 89 (10) ◽  
pp. 101503 ◽  
Author(s):  
Hong-Yu Chu ◽  
Chen-Ting Liao ◽  
Lin I
2013 ◽  
Vol 16 (12) ◽  
pp. 1063-1074 ◽  
Author(s):  
Praveen K. Sharma ◽  
Anita Tiwari ◽  
Rajendra K. Chhajlani

2013 ◽  
Vol 79 (4) ◽  
pp. 405-411 ◽  
Author(s):  
SERGEY I. POPEL ◽  
LEV M. ZELENYI

AbstractFrom the Apollo era of exploration, it was discovered that sunlight was scattered at the terminators giving rise to “horizon glow” and “streamers” above the lunar surface. Subsequent investigations have shown that the sunlight was most likely scattered by electrostatically charged dust grains originating from the surface. A renaissance is being observed currently in investigations of the Moon. The Luna-Glob and Luna-Resource missions (the latter jointly with India) are being prepared in Russia. Some of these missions will include investigations of lunar dust. Here we discuss the future experimental investigations of lunar dust within the missions of Luna-Glob and Luna-Resource. We consider the dusty plasma system over the lunar surface and determine the maximum height of dust rise. We describe mechanisms of formation of the dusty plasma system over the Moon and its main properties, determine distributions of electrons and dust over the lunar surface, and show a possibility of rising dust particles over the surface of the illuminated part of the Moon in the entire range of lunar latitudes. Finally, we discuss the effect of condensation of micrometeoriod substance during the expansion of the impact plume and show that this effect is important from the viewpoint of explanation of dust particle rise to high altitudes in addition to the dusty plasma effects.


2018 ◽  
Vol 11 (4) ◽  
pp. 2325-2343 ◽  
Author(s):  
Xiaoli Shen ◽  
Ramakrishna Ramisetty ◽  
Claudia Mohr ◽  
Wei Huang ◽  
Thomas Leisner ◽  
...  

Abstract. The laser ablation aerosol particle time-of-flight mass spectrometer (LAAPTOF, AeroMegt GmbH) is able to identify the chemical composition and mixing state of individual aerosol particles, and thus is a tool for elucidating their impacts on human health, visibility, ecosystem, and climate. The overall detection efficiency (ODE) of the instrument we use was determined to range from  ∼  (0.01 ± 0.01) to  ∼  (4.23 ± 2.36) % for polystyrene latex (PSL) in the size range of 200 to 2000 nm,  ∼  (0.44 ± 0.19) to  ∼  (6.57 ± 2.38) % for ammonium nitrate (NH4NO3), and  ∼  (0.14 ± 0.02) to  ∼  (1.46 ± 0.08) % for sodium chloride (NaCl) particles in the size range of 300 to 1000 nm. Reference mass spectra of 32 different particle types relevant for atmospheric aerosol (e.g. pure compounds NH4NO3, K2SO4, NaCl, oxalic acid, pinic acid, and pinonic acid; internal mixtures of e.g. salts, secondary organic aerosol, and metallic core–organic shell particles; more complex particles such as soot and dust particles) were determined. Our results show that internally mixed aerosol particles can result in spectra with new clusters of ions, rather than simply a combination of the spectra from the single components. An exemplary 1-day ambient data set was analysed by both classical fuzzy clustering and a reference-spectra-based classification method. Resulting identified particle types were generally well correlated. We show how a combination of both methods can greatly improve the interpretation of single-particle data in field measurements.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Yunhua Cao ◽  
Haiying Li ◽  
Zhe Wang ◽  
Zhensen Wu

Propagation characteristics of oblique incident terahertz wave from the nonuniform dusty plasma are studied using the propagation matrix method. Assuming that the electron density distribution of dusty plasma is parabolic model, variations of power reflection, transmission, and absorption coefficients with frequencies of the incident wave are calculated as the wave illuminates the nonuniform dusty plasma from different angles. The effects of incident angles, number density, and radius of the dust particles on propagation characteristics are discussed in detail. Numerical results show that the number density and radius of the dust particles have very little influences on reflection and transmission coefficients and have obvious effects on absorption coefficients. The terahertz wave has good penetrability in dusty plasma.


2010 ◽  
Vol 14 (1) ◽  
pp. 11-29 ◽  
Author(s):  
Praveen Sharma ◽  
Ram Prajapati ◽  
Rajendra Chhajlani

The linear Rayleigh-Taylor instability of two superposed incompressible magnetized fluids is investigated incorporating the effects of suspended dust particles and viscosity. The basic magnetohydrodynamic set of equations have been constructed and linearized. The dispersion relation for 2-D and 3-D perturbations is obtained by applying the appropriate boundary conditions. The condition of Rayleigh-Taylor instability is investigated for potentially stable and unstable modes, which depends upon magnetic field, viscosity and suspended dust particles. The stability of the system is discussed by applying the Routh-Hurwitz criterion. It is found that the Alfven mode comes into the dispersion relation for perturbations in x, y-directions and in only x-direction, while it does not come into y-directional perturbation. The stable configuration is found to remain stable even in the presence of suspended dust particles. Numerical calculations have been performed to see the effects of various parameters on the growth rate of Rayleigh-Taylor instability. It is found that magnetic field and relaxation frequency of suspended dust particles both have destabilizing influence on the growth rate of Rayleigh-Taylor instability. The effects of kinematic viscosity and mass concentration of dust particles are found to have stabilized the growth rate of linear Rayleigh-Taylor instability.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Qingwen Rao ◽  
Guanjun Xu ◽  
Pengfei Wang ◽  
Zhengqi Zheng

In this paper, the propagation properties of a terahertz (THz) wave in a collisional and inhomogeneous dusty plasma with a ceramic substrate and oblique angle of incidence are studied using the scattering matrix method. The influence of the various corresponding parameters, such as the frequency of the THz wave, angle of incidence, electron density, radius and density of the dust particles, and the collision frequency, on the absorbance and transmittance is calculated. The results of the simulation indicate that an increase in the wave frequency increases the transmittance and decreases the absorbance. Moreover, the absorbance of a THz wave in a dusty plasma with a ceramic substrate increases with an increase in the incident angle, maximum electron density, coefficient of steepness, density and radius of the dust particles, and collision frequency. These results provide an important theoretical basis for the problem of communication blackout between ground and spacecraft.


2008 ◽  
Vol 74 (5) ◽  
pp. 601-605 ◽  
Author(s):  
M. MARKLUND ◽  
L. STENFLO ◽  
P. K. SHUKLA

AbstractThe existence of magnetosonic solitons in dusty plasmas is investigated. The nonlinear magnetohydrodynamic equations for a warm dusty magnetoplasma are thus derived. A solution of the nonlinear equations is presented. It is shown that, owing to the presence of dust, static structures are allowed. This is in sharp contrast to the formation of the so-called shocklets in usual magnetoplasmas. A comparatively small number of dust particles can thus drastically alter the behavior of the nonlinear structures in magnetized plasmas.


2010 ◽  
Vol 51 (6) ◽  
pp. 514-518 ◽  
Author(s):  
T. S. Ramazanov ◽  
S. K. Kodanova ◽  
T. T. Daniyarov ◽  
Zh. A. Moldabekov

2009 ◽  
Vol 52 (3) ◽  
pp. 517-522
Author(s):  
Wei Ju-Na ◽  
Shi Yu-Ren ◽  
He Guang-Jun ◽  
Jiang Xin ◽  
Duan Wen-Shan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document