Detectors for Particle Radiation and Introduction to Experimental Particle Physics and Techniques for Nuclear and Particle Physics Experiments: A How‐To Approach

Physics Today ◽  
1988 ◽  
Vol 41 (10) ◽  
pp. 96-96
Author(s):  
Konrad Kleinknecht ◽  
Richard C. Fernow ◽  
William R. Leo ◽  
Allen Odian
2005 ◽  
Vol 483-485 ◽  
pp. 1021-1024 ◽  
Author(s):  
Francesco Moscatelli ◽  
Andrea Scorzoni ◽  
Antonella Poggi ◽  
Mara Bruzzi ◽  
Stefano Lagomarsino ◽  
...  

Silicon carbide is a promising wide-gap material because of its excellent electrical and physical properties, which are very relevant to technological applications. In particular, silicon carbide can represent a good alternative to Si in applications like the inner tracking detectors of particle physics experiments [1]. In this work p+/n SiC diodes realized on a medium doped (1×1015 cm -3), 40 µm thick epitaxial layer are exploited as detectors and measurements of their charge collection properties under beta particle radiation from Sr90 source are presented. Preliminary results till 900 V reverse voltage show a good collection efficiency of 1700 e- and a collection length (ratio between collected charges and generated e-h pairs/µm) equal to the estimated width of the depleted region.


1977 ◽  
Vol 140 (3) ◽  
pp. 549-552 ◽  
Author(s):  
E.D. Platner ◽  
A. Etkin ◽  
K.J. Foley ◽  
J.H. Goldman ◽  
W.A. Love ◽  
...  

2004 ◽  
Vol 13 (10) ◽  
pp. 2355-2359 ◽  
Author(s):  
JONATHAN L. FENG ◽  
ARVIND RAJARAMAN ◽  
FUMIHIRO TAKAYAMA

The gravitational interactions of elementary particles are suppressed by the Planck scale M*~1018 GeV and are typically expected to be far too weak to be probed by experiments. We show that, contrary to conventional wisdom, such interactions may be studied by particle physics experiments in the next few years. As an example, we consider conventional supergravity with a stable gravitino as the lightest supersymmetric particle. The next-lightest supersymmetric particle (NLSP) decays to the gravitino through gravitational interactions after about a year. This lifetime can be measured by stopping NLSPs at colliders and observing their decays. Such studies will yield a measurement of Newton's gravitational constant on unprecedentedly small scales, shed light on dark matter, and provide a window on the early universe.


2020 ◽  
Vol 245 ◽  
pp. 06003
Author(s):  
Venkitesh Ayyar ◽  
Wahid Bhimji ◽  
Lisa Gerhardt ◽  
Sally Robertson ◽  
Zahra Ronaghi

The success of Convolutional Neural Networks (CNNs) in image classification has prompted efforts to study their use for classifying image data obtained in Particle Physics experiments. Here, we discuss our efforts to apply CNNs to 2D and 3D image data from particle physics experiments to classify signal from background. In this work we present an extensive convolutional neural architecture search, achieving high accuracy for signal/background discrimination for a HEP classification use-case based on simulated data from the Ice Cube neutrino observatory and an ATLAS-like detector. We demonstrate among other things that we can achieve the same accuracy as complex ResNet architectures with CNNs with less parameters, and present comparisons of computational requirements, training and inference times.


2000 ◽  
Vol 35 (12) ◽  
pp. 2018-2030 ◽  
Author(s):  
W. Snoeys ◽  
G. Anelli ◽  
M. Campbell ◽  
E. Cantatore ◽  
F. Faccio ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document