scholarly journals The Impact of Rotation on the Evolution of Low-Mass Stars

2007 ◽  
Author(s):  
Daniel Brown ◽  
Maurizio Salaris ◽  
Richard J. Stancliffe ◽  
Guenter Houdek ◽  
Rebecca G. Martin ◽  
...  
Keyword(s):  
Low Mass ◽  
2019 ◽  
Vol 15 (S354) ◽  
pp. 195-199
Author(s):  
A. Astoul ◽  
S. Mathis ◽  
C. Baruteau ◽  
F. Gallet ◽  
A. Strugarek ◽  
...  

AbstractFor the shortest period exoplanets, star-planet tidal interactions are likely to have played a major role in the ultimate orbital evolution of the planets and on the spin evolution of the host stars. Although low-mass stars are magnetically active objects, the question of how the star’s magnetic field impacts the excitation, propagation and dissipation of tidal waves remains open. We have derived the magnetic contribution to the tidal interaction and estimated its amplitude throughout the structural and rotational evolution of low-mass stars (from K to F-type). We find that the star’s magnetic field has little influence on the excitation of tidal waves in nearly circular and coplanar Hot-Jupiter systems, but that it has a major impact on the way waves are dissipated.


2019 ◽  
Vol 630 ◽  
pp. A52 ◽  
Author(s):  
J. M. Rodríguez-Mozos ◽  
A. Moya

Aims. We present a formalism for a first-order estimation of the magnetosphere radius of exoplanets orbiting stars in the range from 0.08 to 1.3 M⊙. With this radius, we estimate the atmospheric surface that is not protected from stellar winds. We have analyzed this unprotected surface for the most extreme environment for exoplanets: GKM-type and very low-mass stars at the two limits of the habitable zone. The estimated unprotected surface makes it possible to define a likelihood for an exoplanet to retain its atmosphere. This function can be incorporated into the new habitability index SEPHI. Methods. Using different formulations in the literature in addition to stellar and exoplanet physical characteristics, we estimated the stellar magnetic induction, the main characteristics of the stellar wind, and the different star-planet interaction regions (sub- and super-Alfvénic, sub- and supersonic). With this information, we can estimate the radius of the exoplanet magnetopause and thus the exoplanet unprotected surface. Results. We have conducted a study of the auroral aperture angles for Earth-like exoplanets orbiting the habitable zone of its star, and found different behaviors depending on whether the star is in rotational saturated or unsaturated regimes, with angles of aperture of the auroral ring above or below 36°, respectively, and with different slopes for the linear relation between the auroral aperture angle at the inner edge of the habitable zone versus the difference between auroral aperture angles at the two boundaries of the habitable zone. When the planet is tidally locked, the unprotected angle increases dramatically to values higher than 40° with a low likelihood of keeping its atmosphere. When the impact of stellar wind is produced in the sub-Alfvénic regime, the likelihood of keeping the atmosphere is almost zero for exoplanets orbiting very close to their star, regardless of whether they are saturated or not.


2019 ◽  
Vol 631 ◽  
pp. A111 ◽  
Author(s):  
A. Astoul ◽  
S. Mathis ◽  
C. Baruteau ◽  
F. Gallet ◽  
A. Strugarek ◽  
...  

Context. The dissipation of the kinetic energy of wave-like tidal flows within the convective envelope of low-mass stars is one of the key physical mechanisms that shapes the orbital and rotational dynamics of short-period exoplanetary systems. Although low-mass stars are magnetically active objects, the question of how the star’s magnetic field impacts large-scale tidal flows and the excitation, propagation and dissipation of tidal waves still remains open. Aims. Our goal is to investigate the impact of stellar magnetism on the forcing of tidal waves, and their propagation and dissipation in the convective envelope of low-mass stars as they evolve. Methods. We have estimated the amplitude of the magnetic contribution to the forcing and dissipation of tidally induced magneto-inertial waves throughout the structural and rotational evolution of low-mass stars (from M to F-type). For this purpose, we have used detailed grids of rotating stellar models computed with the stellar evolution code STAREVOL. The amplitude of dynamo-generated magnetic fields is estimated via physical scaling laws at the base and the top of the convective envelope. Results. We find that the large-scale magnetic field of the star has little influence on the excitation of tidal waves in the case of nearly-circular orbits and coplanar hot-Jupiter planetary systems, but that it has a major impact on the way waves are dissipated. Our results therefore indicate that a full magneto-hydrodynamical treatment of the propagation and dissipation of tidal waves is needed to properly assess the impact of star-planet tidal interactions throughout the evolutionary history of low-mass stars hosting short-period massive planets.


2021 ◽  
Vol 507 (4) ◽  
pp. 5747-5757
Author(s):  
Ana Brito ◽  
Ilídio Lopes

ABSTRACT All cool stars with outer convective zones have the potential to exhibit stochastically excited stellar oscillations. In this work, we explore the outer layers of stars less massive than the Sun. In particular, we have computed a set of stellar models ranging from 0.4 to 0.9 M⊙ with the aim at determining the impact on stellar oscillations of two physical processes occurring in the envelopes of these stars. Namely, the partial ionization of chemical elements and the electrostatic interactions between particles in the outer layers. We find that alongside with partial ionization, Coulomb effects also impact the acoustic oscillation spectrum. We confirm the well-known result that as the mass of a star decreases, the electrostatic interactions between particles become relevant. We found that their impact on stellar oscillations increases with decreasing mass, and for the stars with the lowest masses (M ≲ 0.6 M⊙), it is shown that Coulomb effects dominate over partial ionization processes producing a strong scatter on the acoustic modes. The influence of Coulomb interactions on the sound-speed gradient profile produces a strong oscillatory behaviour with diagnostic potential for the future.


2008 ◽  
Vol 4 (S252) ◽  
pp. 163-174 ◽  
Author(s):  
Corinne Charbonnel ◽  
Suzanne Talon

AbstractLow-mass stars exhibit, at all stages of their evolution, the signatures of complex physical processes that require challenging modeling beyond standard stellar theory. In this review, we recall the most striking observational evidences that probe the interaction and interdependence of various transport processes of chemicals and angular momentum in these objects. We then focus on the impact of atomic diffusion, large scale mixing due to rotation, and internal gravity waves on stellar properties on the main sequence and slightly beyond.


2002 ◽  
Vol 207 ◽  
pp. 126-128
Author(s):  
Bernhard R. Brandl ◽  
Wolfgang Brandner ◽  
Frank Eisenhauer ◽  
Anthony F. J. Moffat ◽  
Francesco Palla ◽  
...  

We present a study of the star cluster associated with the massive Galactic HII region NGC 3603 based on near-IR broad- and narrowband observations taken with ISAAC/VLT under excellent seeing conditions (≤ 0.4″). We discuss color-color diagrams and address the impact of the high UV flux on the disk evolution of the low-mass stars.


2010 ◽  
Vol 6 (S270) ◽  
pp. 319-322
Author(s):  
Matthias Gritschneder ◽  
Andreas Burkert ◽  
Thorsten Naab ◽  
Stefanie Walch

AbstractWe present high resolution simulations on the impact of ionizing radiation on turbulent molecular clouds. The combination of hydrodynamics, gravitational forces and ionization in the tree-SPH code iVINE naturally leads to the formation of elongated filaments and clumps, which are in excellent agreement with the pillars observed around HII regions. Including gravity the formation of a second generation of low-mass stars with surrounding protostellar disks is triggered at the tips of the pillars, as also observed. A parameter study allows us to determine the physical conditions under which irregular structures form and whether they resemble large pillars or a system of small, isolated globules.


2020 ◽  
Vol 494 (2) ◽  
pp. 2851-2860 ◽  
Author(s):  
Sunmyon Chon ◽  
Kazuyuki Omukai

ABSTRACT Direct collapse black hole (DCBH) formation with mass ≳105 M⊙ is a promising scenario for the origin of high-redshift supermassive black holes. It has usually been supposed that the DCBH can only form in the primordial gas since the metal enrichment enhances the cooling ability and causes the fragmentation into smaller pieces. What actually happens in such an environment, however, has not been explored in detail. Here, we study the impact of the metal enrichment on the clouds, conducting hydrodynamical simulations to follow the cloud evolution in cases with different degree of the metal enrichment Z/Z⊙ = 10−6 to 10−3. Below Z/Z⊙ = 10−6, metallicity has no effect and supermassive stars form along with a small number of low-mass stars. With more metallicity $Z/\mathrm{ Z}_{\odot } \gtrsim5 \times 10^{-6}$, although the dust cooling indeed promotes fragmentation of the cloud core and produces about a few thousand low-mass stars, the accreting flow preferentially feeds the gas to the central massive stars, which grows supermassive as in the primordial case. We term this formation mode as the super competitive accretion, where only the central few stars grow supermassive while a large number of other stars are competing for the gas reservoir. Once the metallicity exceeds 10−3 Z⊙ and metal-line cooling becomes operative, the central star cannot grow supermassive due to lowered accretion rate. Supermassive star formation by the super competitive accretion opens up a new window for seed BHs, which relaxes the condition on metallicity and enhances the seed BH abundance.


2009 ◽  
Vol 5 (H15) ◽  
pp. 239-240
Author(s):  
Anne Dutrey

AbstractIn the context of accretion disks, I briefly discuss the impact of three major forthcoming radio facilities: e-VLA, ALMA and SKA. These arrays are complementary by their frequency range and angular resolution. Around nearby low-mass stars, they will likely provide the first insights in the inner gas and dust disks (radius < 10-30 AU) in the area where planet formation should occur but would also allow the first investigations of the star, jet and disk connections.


2020 ◽  
Vol 635 ◽  
pp. A77 ◽  
Author(s):  
G. Valle ◽  
M. Dell’Omodarme ◽  
P. G. Prada Moroni ◽  
S. Degl’Innocenti

Aims. We performed a theoretical analysis aimed at quantifying the relevance of the small frequency separation δν in determining stellar ages, masses, and radii. We aimed to establish a minimum uncertainty on these quantities for low-mass stars across different evolutionary stages of the main sequence and to evaluate the biases that come from some systematic differences between the stellar model grid adopted for the recovery and the observed stars. Methods. We adopted the Stellar CharactEristics Pisa Estimation gRid (SCEPtER) pipeline for low-mass stars, [0.7, 1.05] M⊙, from the zero-age main sequence (ZAMS) to the central hydrogen depletion. For each model in the grid, we computed oscillation frequencies. Synthetic stars were generated and reconstructed based on different assumptions about the relative precision in the δν parameter (namely 5% and 2%). The quantification of the systematic errors arising from a possible mismatch between synthetic stars and the recovery grid was performed by generating stars from synthetic grids of stellar models with different initial helium abundance and microscopic diffusion efficiency. The results obtained without δν as an observable are included for comparison. Results. The investigation highlighted and confirmed the improvement in the age estimates when δν is available, which has already been reported in the literature. While the biases were negligible, the statistical error affecting age estimates was strongly dependent on the stellar evolutionary phase. The error is at its maximum at ZAMS and it decreases to about 11% and 6% (δν known at 5% and 2% level, respectively) when stars reach the 30% of their evolutionary MS lifetime. The usefulness of small frequency separation in improving age estimates vanishes in the last 20% of the MS. The availability of δν in the fit for mass and radius estimates provided an effect that was nearly identical to its effect on age, assuming an observational uncertainty of 5%. As a departure, with respect to age estimates, no benefit was detected for mass and radius determinations from a reduction of the observational error in δν to 2%. The age variability attributed to differences in the initial helium abundance resulted in negligible results owing to compensation effects that have already been discussed in previous works. On the other hand, the current uncertainty in the initial helium abundance leads to a greater bias (2% and 1% level) in mass and radius estimates whenever δν is in the observational pool. This result, together with the presence of further unexplored uncertainty sources, suggest that precision in the derived stellar quantities below these thresholds may possibly be overoptimistic. The impact of microscopic diffusion was investigated by adopting a grid of models for the recovery which totally neglected the process. The availability of the small frequency separation resulted in biases lower than 5% and 2% for observational errors of 5% and 2%, respectively. The estimates of mass and radius showed again a greater distortion when δν is included among the observables. These biases are at the level of 1%, confirming that threshold as a minimum realistic uncertainty on the derived stellar quantities. Finally, we compared the estimates by the SCEPtER pipeline for 13 Kepler asteroseismic LEGACY sample stars with those given by six different pipelines from literature. This procedure demonstrated a fair agreement for the results. The comparison suggests that a realistic approach to the determination of the error on the estimated parameters consists of approximately doubling the error in the recovered stellar characteristics from a single pipeline. Overall, on the LEGACY sample data, we obtained a multi-pipeline precision of about 4.4%, 1.7%, and 11% on the estimated masses, radii, and ages, respectively.


Sign in / Sign up

Export Citation Format

Share Document