Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings

2008 ◽  
Vol 93 (18) ◽  
pp. 181104 ◽  
Author(s):  
Bradley Bowden ◽  
James A. Harrington ◽  
Oleg Mitrofanov
2012 ◽  
Vol 49 (5) ◽  
pp. 050005
Author(s):  
高飞 Gao Fei ◽  
陈立群 Chen Liqun ◽  
冯广智 Feng Guangzhi ◽  
鲁远甫 Lu Yuanfu ◽  
杨珺 Yang Jun ◽  
...  

2007 ◽  
Author(s):  
B. M. A. Rahman ◽  
Christos Themistos ◽  
Tanvir Huda ◽  
Kenneth T. V. Grattan

2009 ◽  
Vol 7 (9) ◽  
pp. 819-822
Author(s):  
张靓 Liang Zhang ◽  
Farina Knig Farina Knig ◽  
Joerg Neuhaus Joerg Neuhaus ◽  
Dominik Bauer Dominik Bauer ◽  
Thomas Dekorsy Thomas Dekorsy ◽  
...  

2013 ◽  
Vol 38 (10) ◽  
pp. 1606 ◽  
Author(s):  
Yaroslav Urzhumov ◽  
Nathan Landy ◽  
Tom Driscoll ◽  
Dimitri Basov ◽  
David R. Smith

ISRN Optics ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-22 ◽  
Author(s):  
Alexander Argyros

This paper reviews the topic of microstructured polymer fibres in the fields in which these have been utilised: microstructured optical fibres, terahertz waveguides, and fibre-drawn metamaterials. Microstructured polymer optical fibres were initially investigated in the context of photonic crystal fibre research, and several unique features arising from the combination of polymer and microstructure were identified. This lead to investigations in sensing, particularly strain sensing based on gratings, and short-distance data transmission. The same principles have been extended to waveguides at longer wavelengths, for terahertz frequencies, where microstructured polymer waveguides offer the possibility for low-loss flexible waveguides for this frequency region. Furthermore, the combination of microstructured polymer fibres and metals is being investigated in the fabrication of metamaterials, as a scalable method for their manufacture. This paper will review the materials and fabrication methods developed, past and current research in these three areas, and future directions of this fabrication platform.


Author(s):  
David C. Joy ◽  
Dennis M. Maher

High-resolution images of the surface topography of solid specimens can be obtained using the low-loss technique of Wells. If the specimen is placed inside a lens of the condenser/objective type, then it has been shown that the lens itself can be used to collect and filter the low-loss electrons. Since the probeforming lenses in TEM instruments fitted with scanning attachments are of this type, low-loss imaging should be possible.High-resolution, low-loss images have been obtained in a JEOL JEM 100B fitted with a scanning attachment and a thermal, fieldemission gun. No modifications were made to the instrument, but a wedge-shaped, specimen holder was made to fit the side-entry, goniometer stage. Thus the specimen is oriented initially at a glancing angle of about 30° to the beam direction. The instrument is set up in the conventional manner for STEM operation with all the lenses, including the projector, excited.


Author(s):  
Oliver C. Wells

The low-loss electron (LLE) image in the scanning electron microscope (SEM) is useful for the study of uncoated photoresist and some other poorly conducting specimens because it is less sensitive to specimen charging than is the secondary electron (SE) image. A second advantage can arise from a significant reduction in the width of the “penetration fringe” close to a sharp edge. Although both of these problems can also be solved by operating with a beam energy of about 1 keV, the LLE image has the advantage that it permits the use of a higher beam energy and therefore (for a given SEM) a smaller beam diameter. It is an additional attraction of the LLE image that it can be obtained simultaneously with the SE image, and this gives additional information in many cases. This paper shows the reduction in penetration effects given by the use of the LLE image.


Author(s):  
C P Scott ◽  
A J Craven ◽  
C J Gilmore ◽  
A W Bowen

The normal method of background subtraction in quantitative EELS analysis involves fitting an expression of the form I=AE-r to an energy window preceding the edge of interest; E is energy loss, A and r are fitting parameters. The calculated fit is then extrapolated under the edge, allowing the required signal to be extracted. In the case where the characteristic energy loss is small (E < 100eV), the background does not approximate to this simple form. One cause of this is multiple scattering. Even if the effects of multiple scattering are removed by deconvolution, it is not clear that the background from the recovered single scattering distribution follows this simple form, and, in any case, deconvolution can introduce artefacts.The above difficulties are particularly severe in the case of Al-Li alloys, where the Li K edge at ~52eV overlaps the Al L2,3 edge at ~72eV, and sharp plasmon peaks occur at intervals of ~15eV in the low loss region. An alternative background fitting technique, based on the work of Zanchi et al, has been tested on spectra taken from pure Al films, with a view to extending the analysis to Al-Li alloys.


Author(s):  
Daniel UGARTE

Small particles exhibit chemical and physical behaviors substantially different from bulk materials. This is due to the fact that boundary conditions can induce specific constraints on the observed properties. As an example, energy loss experiments carried out in an analytical electron microscope, constitute a powerful technique to investigate the excitation of collective surface modes (plasmons), which are modified in a limited size medium. In this work a STEM VG HB501 has been used to study the low energy loss spectrum (1-40 eV) of silicon spherical particles [1], and the spatial localization of the different modes has been analyzed through digitally acquired energy filtered images. This material and its oxides have been extensively studied and are very well characterized, because of their applications in microelectronics. These particles are thus ideal objects to test the validity of theories developed up to now.Typical EELS spectra in the low loss region are shown in fig. 2 and energy filtered images for the main spectral features in fig. 3.


Author(s):  
H. Seiler ◽  
U. Haas ◽  
K.H. Körtje

The physical properties of small metal particles reveal an intermediate position between atomic and bulk material. Especially Ag has shown pronounced size effects. We compared silver layers evaporated in high vacuum with cluster layers of small silver particles, evaporated in N2 at a pressure of about 102 Pa. The investigations were performed by electron optical methods (TEM, SEM, EELS) and by Photoacoustic (PA) Spectroscopy (gas-microphone detection).The observation of cluster layers with TEM and high resolution SEM show small silver particles with diameters of about 50 nm (Fig. 1 and Figure 2, respectively). The electron diffraction patterns of homogeneous Ag layers and of cluster layers are similar, whereas the low loss EELS spectra due to plasmon excitation are quite different. Fig. 3 and Figure 4 show first results of EELS spectra of a cluster layer of small silver particles on carbon foil and of a homogeneous Ag layer, respectively.


Sign in / Sign up

Export Citation Format

Share Document