Deep donor state in InN: Temperature-dependent electron transport in the electron accumulation layers and its influence on Hall-effect measurements

2011 ◽  
Vol 99 (18) ◽  
pp. 182107 ◽  
Author(s):  
N. Ma ◽  
X. Q. Wang ◽  
S. T. Liu ◽  
L. Feng ◽  
G. Chen ◽  
...  
2006 ◽  
Vol 527-529 ◽  
pp. 633-636 ◽  
Author(s):  
Sylvie Contreras ◽  
Marcin Zielinski ◽  
Leszek Konczewicz ◽  
Caroline Blanc ◽  
Sandrine Juillaguet ◽  
...  

We report on investigation of p-type doped, SiC wafers grown by the Modified- Physical Vapor Transport (M-PVT) method. SIMS measurements give Al concentrations in the range 1018 to 1020 cm-3, with weak Ti concentration but large N compensation. To measure the wafers’ resistivity, carrier concentration and mobility, temperature-dependant Hall effect measurements have been made in the range 100-850 K using the Van der Pauw method. The temperature dependence of the mobility suggests higher Al concentration, and higher compensation, than estimated from SIMS. Additional LTPL measurements show no evidence of additional impurities in the range of investigation, but suggest that the additional compensation may come from an increased concentration of non-radiative centers.


2012 ◽  
Vol 21 (7) ◽  
pp. 1469-1477 ◽  
Author(s):  
Chiara Modanese ◽  
Maurizio Acciarri ◽  
Simona Binetti ◽  
Anne-Karin Søiland ◽  
Marisa Di Sabatino ◽  
...  

1993 ◽  
Vol 302 ◽  
Author(s):  
B.K. Meyer ◽  
D.M. Hofmann ◽  
W. Stadler ◽  
M. Salk ◽  
C. Eiche ◽  
...  

ABSTRACTWe report on electrical and optical properties of vertical Bridgman grown Cl-doped CdTe including the ternary compositions Cd0.9Zn0.1Te and CdTe0 9Se0.1 with respect to application as a radiation detector. Based on Hall effect measurements, photoinduced current spectroscopy (PICTS) and photoluminescence we infer that high resistive material with good performance is controlled by deep level defects. The resistivity is calculated as a function of the shallow acceptor concentration (Cl-A-centers) with the conclusion that a deep donor state at mid gap must be present.


1985 ◽  
Vol 46 ◽  
Author(s):  
L.T. Parechanian ◽  
E.R. Weber ◽  
T.L. Hierl

AbstractThe simultaneous molecular beam epitaxy (MBE) growth of (100) and (110) GaAs/GaAsintentionally doped with Si(∼lE16/cm^3) was studied as a function of substrate temperature, arsenic overpressure, and epitaxial growth rate. The films wereanalyzed by scanning electron and optical microscopy, liquid helium photoluminescence (PL), and electronic characterization.For the (110) epitaxal layers, an increase in morphological defect density and degradation of PL signal was observed with a lowering of the substrate temperature from 570C. Capacitance-voltage (CV) and Hall Effect measurements yield room temperature donor concentrations for the (100) films of n∼l5/cm^3 while the (110) layers exhibit electron concentrations of n∼2El7/cm^3. Hall measurements at 77K on the (100) films show the expected mobility enhancement of Si donors, whereas the (110) epi layers become insulating or greatly compensated. This behavior suggests that room temperature conduction in the (110) films is due to a deeper donor partially compensated by an acceptor level whose concentration is of the same order of magnitude as that of any electrically active Si. Temperature dependent Hall effect indicates that the activation energy of the deeper donor level lies ∼290 meV from the conduction band. PL and Hall effect indicate that the better quality (110) material is grown by increasingthe arsenic flux during MBE growth. The nature of the defects involved with the growth process will be discussed.


2003 ◽  
Vol 793 ◽  
Author(s):  
Jarrod Short ◽  
Sim Loo ◽  
Sangeeta Lal ◽  
Kuei Fang Hsu ◽  
Eric Quarez ◽  
...  

ABSTRACTIn the field of thermoelectrics, the figure of merit of new materials is based on the electrical conductivity, thermoelectric power, and thermal conductivity of the sample, however additional insight is gained through knowledge of the carrier concentrations and mobility in the materials. The figure of merit is commonly related to the material properties through the B factor which is directly dependent on the mobility of the carriers as well as the effective mass.To gain additional insight on the new materials of interest for thermoelectric applications, a Hall Effect system has been developed for measuring the temperature dependent carrier concentrations and mobilities. In this paper, the measurement system will be described, and recent results for several new materials will be presented.


2004 ◽  
Vol 457-460 ◽  
pp. 677-680 ◽  
Author(s):  
L. Kasamakova-Kolaklieva ◽  
L. Storasta ◽  
Ivan G. Ivanov ◽  
Björn Magnusson ◽  
Sylvie Contreras ◽  
...  

2003 ◽  
Vol 195 (1) ◽  
pp. 243-247 ◽  
Author(s):  
P. Terziyska ◽  
C. Blanc ◽  
J. Pernot ◽  
H. Peyre ◽  
S. Contreras ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document