Three-dimensional growth mechanism of cosmo-mimetic carbon microcoils obtained by chemical vapor deposition

1999 ◽  
Vol 85 (7) ◽  
pp. 3919-3921 ◽  
Author(s):  
Seiji Motojima ◽  
Quiqin Chen
1988 ◽  
Vol 116 ◽  
Author(s):  
R.A. Rudder ◽  
S.V. Hattangady ◽  
D.J. Vitkavage ◽  
R.J. Markunas

Heteroepitaxial growth of Ge on Si(100) has been accomplished using remote plasma enhanced chemical vapor deposition at 300*#x00B0;C. Reconstructed surfaces with diffraction patterns showing non-uniform intensity variations along the lengths of the integral order streaks are observed during the first 100 Å of deposit. This observation of an atomically rough surface during the initial stages of growth is an indication of three-dimensional growth. As the epitaxial growth proceeds, the diffraction patterns become uniform with extensive streaking on both the integral and fractional order streaks. Subsequent growth, therefore, takes place in a layer-by-layer, two-dimensional mode. X-ray photoelectron spectroscopy of the early nucleation stages, less than 80 Å, show that there is uniform coverage with no evidence of island formation.


1992 ◽  
Vol 114 (3) ◽  
pp. 735-742 ◽  
Author(s):  
Y. T. Lin ◽  
M. Choi ◽  
R. Greif

A study has been made of the deposition of particles that occurs during the modified chemical vapor deposition (MCVD) process. The three-dimensional conservation equations of mass, momentum, and energy have been solved numerically for forced flow, including the effects of buoyancy and variable properties in a heated, rotating tube. The motion of the particles that are formed is determined from the combined effects resulting from thermophoresis and the forced and secondary flows. The effects of torch speed, rotational speed, inlet flow rate, tube radius, and maximum surface temperature on deposition are studied. In a horizontal tube, buoyancy results in circumferentially nonuniform temperature and velocity fields and particle deposition. The effect of tube rotation greatly reduces the nonuniformity of particle deposition in the circumferential direction. The process is chemical-reaction limited at larger flow rates and particle-transport limited at smaller flow rates. The vertical tube geometry has also been studied because its symmetric configuration results in uniform particle deposition in the circumferential direction. The “upward” flow condition results in a large overall deposition efficiency, but this is also accompanied by a large “tapered entry length.”


1991 ◽  
Vol 30 (Part 2, No. 4B) ◽  
pp. L725-L727 ◽  
Author(s):  
Harumi Hayashi ◽  
Yasuji Yamada ◽  
Tsunemi Sugimoto ◽  
Yuh Shiohara ◽  
Shoji Tanaka

RSC Advances ◽  
2016 ◽  
Vol 6 (48) ◽  
pp. 41891-41896 ◽  
Author(s):  
Wei Han ◽  
Yanming Zhao ◽  
Qinghua Fan ◽  
Qidong Li

1D NdB6 nanostructures (nanobelts, nanoawls, and nanotubes) have been synthesized through a chemical vapor deposition (CVD) process with a self-catalyzed mechanism.


1987 ◽  
Vol 105 ◽  
Author(s):  
T. Inushima ◽  
N. Hirose ◽  
K. Urata ◽  
K. Ito ◽  
S. Yamazaki

AbstractThe photo-chemical vapor deposition (CVD) of SiO2 and SiN2 were investigated using 185 nm light of a low pressure mercury lamp. The film thickness deposited on the substrate was the function of the distance from the substrate to the light source and its relation was investigated by changing the reaction pressure. From these investigations, the space migration length of the active species was estimated, which was, at the processing pressure of 400 Pa, about 10–20 mm. This migration length was confirmed by a model calculation. The step coverage of the film was investigated by the use of a two-dimensional capillary cavity. It was shown that the thickness decayed exponentially with the depth in the cavity. The decay constant did not show temperature dependence. From this result, the surface migration of the active species produced by photo-CVD was reported. To confirm this migration we presented a substrate- size effect of photo-CVD, which became obvious when the substrate size became smaller than the space migration length of the active species. From these results, the film growth mechanism of photo-CVD was discussed.


1997 ◽  
Vol 46 (10) ◽  
pp. 2015
Author(s):  
CHEN GUO ◽  
GUO XIAO-XU ◽  
ZHU MEI-FANG ◽  
SUN JING-LAN ◽  
XU HUAI-ZHE ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document