Time-dependent O2 mass balance change and target surface oxidation during mode transition in Ti–O2 reactive sputtering

2000 ◽  
Vol 87 (4) ◽  
pp. 2015-2019 ◽  
Author(s):  
Eiji Kusano ◽  
Akira Kinbara
Vacuum ◽  
2010 ◽  
Vol 84 (12) ◽  
pp. 1365-1367 ◽  
Author(s):  
Yoshio Abe ◽  
Koji Shinya ◽  
Youjiro Chiba ◽  
Midori Kawamura ◽  
Katsutaka Sasaki

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2266-2266 ◽  
Author(s):  
Athiwat Hutchaleelaha ◽  
Christine Ye ◽  
Yonghong Song ◽  
Todd Lorenz ◽  
Daniel Gretler ◽  
...  

Abstract Abstract 2266 Betrixaban is a once daily oral Factor Xa inhibitor being investigated in a Phase 3 clinical trial to prevent venous thromboembolism in acute medically ill patients (APEX Study). Mass balance, metabolite profile and interaction with major CYP enzymes were evaluated in this study. Portola study 06–005 was an open-label, single-dose, mass-balance and metabolic profiling study using 14C-labeled betrixaban in 5 healthy male volunteers. Each subject received a single oral solution containing 40 mg of betrixaban labeled with 100 μCi of 14C. Blood samples were taken serially over a 168-hour interval. Urine samples and fecal samples were collected during the 7–14 day confinement period. Subjects were discharged from the unit when at least one of the following criteria were met: 90% of the radioactivity was recovered in urine and feces, daily excreted radioactivity was 1% or less of administered dose on two consecutive days, or subject reached 336 hours (14 days) post dose. The plasma concentration equivalents of total radioactivity increased rapidly following dosing with a mean peak of 31.69 ng eq/mL occurring at 3.5 hours post-dose. AUC and half-life could not be calculated as radioactivity in plasma could only be detected up to 6 hours post dose. Terminal elimination half life determined in other clinical pharmacology studies was 37 hours. Total radioactivity recovered from urine and feces was approximately 96% (range 92% to 99%), with the majority of 14C recovery in feces (82% to 89% of the dose). The 14C dose recovered in urine, composed of betrixaban and inactive metabolites, ranged from 6% to 13%. The metabolic profile of betrixaban was determined in plasma, urine and feces. Unchanged betrixaban was the predominant component found in human plasma and excreta, accounting for 85.3% of the dose excreted in urine and feces. The major biotransformation pathway for betrixaban was hydrolysis to form PRT062802 and PRT062803, a non-14C labeled metabolite (Figure 1). PRT062803 can be demethylated to form PRT062799 or hydroxylated to form PRT062982. PRT062982 is further conjugated with sulfate to form PRT063069. Both PRT062802 and PRT063069 were major circulating metabolites in human plasma with AUC of 34% and 24% that of betrixaban, respectively. PRT062802 was the only prominent metabolite detected in human urine and feces. In addition to hydrolysis metabolites, two CYP-mediated metabolites, O-desmethyl betrixaban (PRT058326) and N-desmethyl betrixaban (PRT054156), were observed in plasma at trace levels (AUC of each was <1% that of betrixaban). Trace levels of PRT058326 was also observed in urine and feces. Both PRT062802 and PRT063069 were inactive (IC50 for fXa inhibition >10 μM). PRT058326 and PRT054156 have an IC50 for fXa inhibition of approximately 5 nM compared to betrixaban Ki of 0.117 pM. Interaction of betrixaban with CYP enzymes was studied in vitro. CYP inhibition potential was evaluated in human liver microsomes with or without 30 minute pre-incubation of betrixaban. Selective probe substrates were used to monitor CYP activities, i.e. phenacetin for 1A2, tolbutamide for 2C9, S-mephenytoin for 2C19, dextromethorphan for 2D6, and testosterone and midazolam for 3A4. Betrixaban had IC50 > 80 μM for CYP1A2, 2C9, 2D6 and 3A4 for both competitive and time-dependent inhibition. IC50 for 2C19 were 43 and 88 μM for competitive and time-dependent inhibition, respectively. The CYP inhibition IC50's are much higher than the betrixaban therapeutic concentration of 50 nM. CYP induction by betrixaban was also studied using cryopreserved human hepatocytes (n=3). Betrixaban at 1, 10 and 25 μM were incubated in hepatocyte preparation for 48 hours. The activities for CYP1A2, CYP2C9, CYP2C19, and CYP3A4 were determined by measuring the formation of metabolites of the probe substrates similar to those used in the CYP inhibition study. CYP2C19 activities were not quantifiable in all three donors; therefore, induction for this CYP isoform could not be assessed. Betrixaban did not induce the activities of CYP1A2, CYP2C9, and CYP3A4. These results demonstrated that betrixaban was mainly excreted as the unchanged drug most likely via biliary secretion. Renal excretion and metabolism were minor elimination pathways. Betrixaban is unlikely to have drug-drug interactions with CYP-substrate, inducer, or inhibitor drugs. Disclosures: Hutchaleelaha: Portola pharmaceuticals: Employment. Ye:Portola Pharmaceuticals: Employment. Song:Portola Pharmaceuticals: Employment. Lorenz:Portola Pharmaceuticals: Employment. Gretler:Portola Pharmaceuticals: Equity Ownership. Lambing:Portola Pharmaceuticals: Employment.


2021 ◽  
Author(s):  
Jie Su ◽  
Hao Yin ◽  
Bin Cheng ◽  
Timo Vihma

&lt;p&gt;Due to its high surface albedo, strong thermal insulation and complex temporal and spatial distribution, snow on top of sea ice plays an important role in the air-ice-ocean interaction in polar regions and high latitudes. Accurate snow mass balance calculations are needed to better understand the evolution of sea ice and polar climate. Snow depth is affected by many factors, but in thermodynamic models many of them are treated in a relatively simple manner. One of such factors is snow density.&amp;#160; In reality, it varies a lot in space and time but a constant bulk snow density is often used to convert precipitation (snow water equivalence) to snow depth. The densification of snow is considered to affect snow depth mainly by altering snow thermal properties rather than directly on snow depth.&lt;/p&gt;&lt;p&gt;Based on the mass conservation principle, a one-dimensional high-resolution ice and snow thermodynamic model was applied to investigate the impact of snow density on snow depth along drift trajectories of 26 sea ice mass balance buoys (IMB) deployed in various parts of the Arctic Ocean. The ERA-Interim reanalysis data are used as atmospheric forcing for the ice model. In contrast to the bulk snow density approach, with a constant density of 330 kg/m&lt;sup&gt;3&lt;/sup&gt; (T1) or 200kg/m&lt;sup&gt;3&lt;/sup&gt; (T2), our new approach considers new and old snow with different time dependent densities (T3). The calculated results are compared with the snow thickness observed by the IMBs. The average snow depth observed by 26 IMBs during the snow season was 20&amp;#177;14 cm. Applying the bulk density (T1 and T2) or time dependent separate snow densities (T3), the modelled average snow depths are 16&amp;#177;13 cm, 22&amp;#177;17cm and 17&amp;#177;12cm, respectively. For the cases during snow accumulate period, the new approach (T3) has similar result with T1 and improved the modelled snow depth obviously from that of T2.&lt;/p&gt;


2007 ◽  
Vol 46 (10A) ◽  
pp. 6778-6781 ◽  
Author(s):  
Yoshio Abe ◽  
Takaya Takisawa ◽  
Midori Kawamura ◽  
Katsutaka Sasaki

1989 ◽  
Vol 35 (120) ◽  
pp. 163-168 ◽  
Author(s):  
Anne Letrèguilly ◽  
Louis Reynaud

Abstract Long-term records (10–30 years of measurements) of North American glaciers are compared using Lliboutry’s simplified linear model. This model separates the mass balance into two additive terms, one dependent on the location of the glacier and the other on time. The time-dependent term provides a common signal for the variations of different glaciers. Principal-component analysis indicates that these similarities amount to between 65 and 70% of the total variance for glaciers up to about 500 km apart. Within this distance, similar variations of mass balance and, therefore the same yearly climatic variations, can be observed.


2007 ◽  
Vol 45 (3) ◽  
pp. 287-299 ◽  
Author(s):  
Barry L. Robert

ABSTRACT A time-dependent ice flow model is used to provide detailed reconstructions of ice growth and retreat for the southern portion of the Late Wisconsinan Cordilleran Ice Sheet. The two-dimensional, time-dependent model provides ice surface elevations and flow directions at a grid spacing of 15 km. Input to the model includes subglacial topography, a net mass balance function, and two ice flow parameters. The net mass balance function uses a polynomial equation to estimate equilibrium line altitude (ELA) across the study area. A quadratic equation is then used to provide net mass balance values as a function of elevation relative to the ELA. Late Wisconsinan glacial conditions are simulated by systematically lowering the ELA. The general timing of the model ice advance and retreat is tested against radiocarbon dated localities which place limits on the ice sheet's areal extent for different times during the Late Wisconsinan glaciation. In addition, glacial-geologic evidence directly attributable to the latest Cordilleran Ice Sheet is used in assessing the model reconstructions. Results from these experiments show that an ice growth and retreat chronology consistent with the limiting radiocarbon dates can be generated using the model, and provide information on flow directions and ice growth and retreat patterns.


2017 ◽  
Vol 116 (1) ◽  
pp. 77-92 ◽  
Author(s):  
Hans Cruz ◽  
Marisol Bermúdez-Montaña ◽  
Renato Lemus

2004 ◽  
Vol 50 (170) ◽  
pp. 363-370 ◽  
Author(s):  
Leif H. Cox ◽  
Rod S. March

AbstractThe net mass balance on Gulkana Glacier, Alaska, U.S.A., has been measured since 1966 by the glaciological method, in which seasonal balances are measured at three index sites and extrapolated over large areas of the glacier. Systematic errors can accumulate linearly with time in this method. Therefore, the geodetic balance, in which errors are less time-dependent, was calculated for comparison with the glaciological method. Digital elevation models of the glacier in 1974, 1993 and 1999 were prepared using aerial photographs, and geodetic balances were computed, giving – 6.0 ± 0.7 m w.e. from 1974 to 1993 and -11.8 ± 0.7 m w.e. from 1974 to 1999. These balances are compared with the glaciological balances over the same intervals, which were – 5.8 ± 0.9 and -11.2 ± 1.0 m w.e. respectively; both balances show that the thinning rate tripled in the 1990s. These cumulative balances differ by <6%. For this close agreement, the glaciologically measured mass balance of Gulkana Glacier must be largely free of systematic errors and be based on a time-variable area-altitude distribution, and the photography used in the geodetic method must have enough contrast to enable accurate photogrammetry.


Sign in / Sign up

Export Citation Format

Share Document