The high performance of a thin film thermoelectric generator with heat flow running parallel to film surface

2013 ◽  
Vol 102 (3) ◽  
pp. 033904 ◽  
Author(s):  
Ping Fan ◽  
Zhuang-hao Zheng ◽  
Zhao-kun Cai ◽  
Tian-bao Chen ◽  
Peng-juan Liu ◽  
...  
2021 ◽  
Vol 118 (15) ◽  
pp. 151601
Author(s):  
Takafumi Ishibe ◽  
Atsuki Tomeda ◽  
Yuki Komatsubara ◽  
Reona Kitaura ◽  
Mutsunori Uenuma ◽  
...  

2013 ◽  
Vol 802 ◽  
pp. 242-246 ◽  
Author(s):  
Narathon Khemasiri ◽  
Chanunthorn Chananonnawathorn ◽  
Mati Horprathum ◽  
Yossawat Rayanasukha ◽  
Darinee Phromyothin ◽  
...  

Tantalum oxide (Ta2O5) thin films, 100 nm thick were deposited by D.C. reactive magnetron sputtering system at different operated pressure on unheated p-type silicon (100) wafer and 304 stainless substrates. Their crystalline structure, film surface morphology and optical properties, as well as anticorrosive behavior, were investigated. The structure and morphology of films were characterized by grazing-incidence X-ray diffraction (GIXRD) and atomic force microscopy (AFM). The optical properties were determined by spectroscopic ellipsometry (SE). The corrosion performances of the films were investigated through potentiostat and immersion tests in 1 M NaCl solutions. The results showed that as-deposited Ta2O5 thin films were amorphous. The refractive index varied from 2.06 to 2.17 (at 550 nm) with increasing operated pressure. The corrosion rate of Ta2O5 thin film improves as the operated pressure decreases. The Ta2O5 thin films deposited at 3 mTorr operated pressure could be exhibited high performance anticorrosive behavior.


Author(s):  
K. Ogura ◽  
H. Nishioka ◽  
N. Ikeo ◽  
T. Kanazawa ◽  
J. Teshima

Structural appraisal of thin film magnetic media is very important because their magnetic characters such as magnetic hysteresis and recording behaviors are drastically altered by the grain structure of the film. However, in general, the surface of thin film magnetic media of magnetic recording disk which is process completed is protected by several-nm thick sputtered carbon. Therefore, high-resolution observation of a cross-sectional plane of a disk is strongly required to see the fine structure of the thin film magnetic media. Additionally, observation of the top protection film is also very important in this field.Recently, several different process-completed magnetic disks were examined with a UHR-SEM, the JEOL JSM 890, which consisted of a field emission gun and a high-performance immerse lens. The disks were cut into approximately 10-mm squares, the bottom of these pieces were carved into more than half of the total thickness of the disks, and they were bent. There were many cracks on the bent disks. When these disks were observed with the UHR-SEM, it was very difficult to observe the fine structure of thin film magnetic media which appeared on the cracks, because of a very heavy contamination on the observing area.


Author(s):  
C.K. Wu ◽  
P. Chang ◽  
N. Godinho

Recently, the use of refractory metal silicides as low resistivity, high temperature and high oxidation resistance gate materials in large scale integrated circuits (LSI) has become an important approach in advanced MOS process development (1). This research is a systematic study on the structure and properties of molybdenum silicide thin film and its applicability to high performance LSI fabrication.


2010 ◽  
Vol 130 (2) ◽  
pp. 161-166
Author(s):  
Yoshinori Ishikawa ◽  
Yasuo Wada ◽  
Toru Toyabe ◽  
Ken Tsutsui

1999 ◽  
Author(s):  
Eli Yablonovitch ◽  
Misha Boroditsky ◽  
Rutger Vrijen ◽  
Thomas F. Krauss ◽  
Roberto Coccioli

Author(s):  
M. A. Tit ◽  
S. N. Belyaev

This article considers the research results of the effect of stoichiometry on the properties of titanium nitride thin-film coatings of the float and electrostatic gyroscopes. It presents the results of tests of such mechanical and optical characteristics of titanium nitride thin-film structures as microhardness, resistance to wear and friction, and image contrast determined by the reflection coefficients of a titanium nitride base surface and a raster pattern formed by local laser oxidation. When making a rotor of a cryogenic gyroscope, the prospects of use and technological methods for the formation of functional surface structures of niobium carbide and nitride are considered. It is shown that during the formation of coatings of the required composition, the most important is the thermodynamic estimation of possible interactions. These interactions allow us to accomplish the structural-phase modification of the material, which is determined by the complex of possible topochemical reactions leading to the formation of compounds, including non-stoichiometric composition.


Author(s):  
Stephen R. Forrest

Organic electronics is a platform for very low cost and high performance optoelectronic and electronic devices that cover large areas, are lightweight, and can be both flexible and conformable to irregularly shaped surfaces such as foldable smart phones. Organics are at the core of the global organic light emitting device (OLED) display industry, and also having use in efficient lighting sources, solar cells, and thin film transistors useful in medical and a range of other sensing, memory and logic applications. This book introduces the theoretical foundations and practical realization of devices in organic electronics. It is a product of both one and two semester courses that have been taught over a period of more than two decades. The target audiences are students at all levels of graduate studies, highly motivated senior undergraduates, and practicing engineers and scientists. The book is divided into two sections. Part I, Foundations, lays down the fundamental principles of the field of organic electronics. It is assumed that the reader has an elementary knowledge of quantum mechanics, and electricity and magnetism. Background knowledge of organic chemistry is not required. Part II, Applications, focuses on organic electronic devices. It begins with a discussion of organic thin film deposition and patterning, followed by chapters on organic light emitters, detectors, and thin film transistors. The last chapter describes several devices and phenomena that are not covered in the previous chapters, since they lie outside of the current mainstream of the field, but are nevertheless important.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2194
Author(s):  
Kamil Łuczykowski ◽  
Natalia Warmuzińska ◽  
Sylwia Operacz ◽  
Iga Stryjak ◽  
Joanna Bogusiewicz ◽  
...  

Bladder cancer (BC) is a common malignancy of the urinary system and a leading cause of death worldwide. In this work, untargeted metabolomic profiling of biological fluids is presented as a non-invasive tool for bladder cancer biomarker discovery as a first step towards developing superior methods for detection, treatment, and prevention well as to further our current understanding of this disease. In this study, urine samples from 24 healthy volunteers and 24 BC patients were subjected to metabolomic profiling using high throughput solid-phase microextraction (SPME) in thin-film format and reversed-phase high-performance liquid chromatography coupled with a Q Exactive Focus Orbitrap mass spectrometer. The chemometric analysis enabled the selection of metabolites contributing to the observed separation of BC patients from the control group. Relevant differences were demonstrated for phenylalanine metabolism compounds, i.e., benzoic acid, hippuric acid, and 4-hydroxycinnamic acid. Furthermore, compounds involved in the metabolism of histidine, beta-alanine, and glycerophospholipids were also identified. Thin-film SPME can be efficiently used as an alternative approach to other traditional urine sample preparation methods, demonstrating the SPME technique as a simple and efficient tool for urinary metabolomics research. Moreover, this study’s results may support a better understanding of bladder cancer development and progression mechanisms.


Sign in / Sign up

Export Citation Format

Share Document