Interface study and performance of large layer pair ultra-short period W/B4C X-ray multilayer

2015 ◽  
Author(s):  
P. C. Pradhan ◽  
M. Nayak ◽  
P. Mondal ◽  
G. S. Lodha
Author(s):  
M. E. Twigg ◽  
B. R. Bennett ◽  
J. R. Waterman ◽  
J. L. Davis ◽  
B. V. Shanabrook ◽  
...  

Recently, the GaSb/InAs superlattice system has received renewed attention. The interest stems from a model demonstrating that short period Ga1-xInxSb/InAs superlattices will have both a band gap less than 100 meV and high optical absorption coefficients, principal requirements for infrared detector applications. Because this superlattice system contains two species of cations and anions, it is possible to prepare either InSb-like or GaAs-like interfaces. As such, the system presents a unique opportunity to examine interfacial properties.We used molecular beam epitaxy (MBE) to prepare an extensive set of GaSb/InAs superlattices grown on an GaSb buffer, which, in turn had been grown on a (100) GaAs substrate. Through appropriate shutter sequences, the interfaces were directed to assume either an InSb-like or GaAs-like character. These superlattices were then studied with a variety of ex-situ probes such as x-ray diffraction and Raman spectroscopy. These probes confirmed that, indeed, predominantly InSb-like and GaAs-like interfaces had been achieved.


Galaxies ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 25
Author(s):  
Debjit Chatterjee ◽  
Arghajit Jana ◽  
Kaushik Chatterjee ◽  
Riya Bhowmick ◽  
Sujoy Kumar Nath ◽  
...  

We study the properties of the faint X-ray activity of Galactic transient black hole candidate XTE J1908+094 during its 2019 outburst. Here, we report the results of detailed spectral and temporal analysis during this outburst using observations from Nuclear Spectroscopic Telescope Array (NuSTAR). We have not observed any quasi-periodic-oscillations (QPOs) in the power density spectrum (PDS). The spectral study suggests that the source remained in the softer (more precisely, in the soft–intermediate) spectral state during this short period of X-ray activity. We notice a faint but broad Fe Kα emission line at around 6.5 keV. We also estimate the probable mass of the black hole to be 6.5−0.7+0.5M⊙, with 90% confidence.


2016 ◽  
Author(s):  
Maurice A. Leutenegger ◽  
Marc Audard ◽  
Kevin R. Boyce ◽  
Gregory V. Brown ◽  
Meng P. Chiao ◽  
...  
Keyword(s):  
X Ray ◽  

1996 ◽  
Vol 368 (1-3) ◽  
pp. 185-189 ◽  
Author(s):  
T Tsuruoka ◽  
Y Uehara ◽  
S Ushioda ◽  
T Kojima ◽  
Y Sugiyama

2018 ◽  
Vol 25 (3) ◽  
pp. 686-705 ◽  
Author(s):  
M. Calvi ◽  
C. Camenzuli ◽  
R. Ganter ◽  
N. Sammut ◽  
Th. Schmidt

Within the SwissFEL project at the Paul Scherrer Institute (PSI), the hard X-ray line (Aramis) has been equipped with short-period in-vacuum undulators, known as the U15 series. The undulator design has been developed within the institute itself, while the prototyping and the series production have been implemented through a close collaboration with a Swiss industrial partner, Max Daetwyler AG, and several subcontractors. The magnetic measurement system has been built at PSI, together with all the data analysis tools. The Hall probe has been designed for PSI by the Swiss company SENIS. In this paper the general concepts of both the mechanical and the magnetic properties of the U15 series of undulators are presented. A description of the magnetic measurement equipment is given and the results of the magnetic measurement campaign are reported. Lastly, the data reduction methods and the associated models are presented and their actual implementation in the control system is detailed.


Author(s):  
Ralf K. Heilmann ◽  
Alexander R. Bruccoleri ◽  
Jungki Song ◽  
Mark L. Schattenburg ◽  
Randall K. Smith ◽  
...  
Keyword(s):  
X Ray ◽  

2018 ◽  
Vol 25 (6) ◽  
pp. 1673-1682 ◽  
Author(s):  
Adam S. Hoffman ◽  
Joseph A. Singh ◽  
Stacey F. Bent ◽  
Simon R. Bare

In situ characterization of catalysts gives direct insight into the working state of the material. Here, the design and performance characteristics of a universal in situ synchrotron-compatible X-ray diffraction cell capable of operation at high temperature and high pressure, 1373 K, and 35 bar, respectively, are reported. Its performance is demonstrated by characterizing a cobalt-based catalyst used in a prototypical high-pressure catalytic reaction, the Fischer–Tropsch synthesis, using X-ray diffraction. Cobalt nanoparticles supported on silica were studied in situ during Fischer–Tropsch catalysis using syngas, H2 and CO, at 723 K and 20 bar. Post reaction, the Co nanoparticles were carburized at elevated pressure, demonstrating an increased rate of carburization compared with atmospheric studies.


2013 ◽  
Vol 46 (5) ◽  
pp. 1508-1512 ◽  
Author(s):  
Byron Freelon ◽  
Kamlesh Suthar ◽  
Jan Ilavsky

Coupling small-angle X-ray scattering (SAXS) and ultra-small-angle X-ray scattering (USAXS) provides a powerful system of techniques for determining the structural organization of nanostructured materials that exhibit a wide range of characteristic length scales. A new facility that combines high-energy (HE) SAXS and USAXS has been developed at the Advanced Photon Source (APS). The application of X-rays across a range of energies, from 10 to 50 keV, offers opportunities to probe structural behavior at the nano- and microscale. An X-ray setup that can characterize both soft matter or hard matter and high-Zsamples in the solid or solution forms is described. Recent upgrades to the Sector 15ID beamline allow an extension of the X-ray energy range and improved beam intensity. The function and performance of the dedicated USAXS/HE-SAXS ChemMatCARS-APS facility is described.


2017 ◽  
Vol 24 (6) ◽  
pp. 1113-1119 ◽  
Author(s):  
E. Nazaretski ◽  
H. Yan ◽  
K. Lauer ◽  
N. Bouet ◽  
X. Huang ◽  
...  

A hard X-ray scanning microscope installed at the Hard X-ray Nanoprobe beamline of the National Synchrotron Light Source II has been designed, constructed and commissioned. The microscope relies on a compact, high stiffness, low heat dissipation approach and utilizes two types of nanofocusing optics. It is capable of imaging with ∼15 nm × 15 nm spatial resolution using multilayer Laue lenses and 25 nm × 26 nm resolution using zone plates. Fluorescence, diffraction, absorption, differential phase contrast, ptychography and tomography are available as experimental techniques. The microscope is also equipped with a temperature regulation system which allows the temperature of a sample to be varied in the range between 90 K and 1000 K. The constructed instrument is open for general users and offers its capabilities to the material science, battery research and bioscience communities.


1990 ◽  
Vol 185 ◽  
Author(s):  
Alain E. Kaloyeros ◽  
Robert M. Ehrenreich

AbstractPhosphorus is found to be a common impurity in many of the iron tools and weapons produced during the pre-Roman and Roman Iron Ages of Britain (600 BC - 300 AD). The effects of this impurity on the properties and performance of antiquarian materials is not well understood, however. This paper presents the initial findings of an in-depth study of the distribution, chemistry, and effects of phosphorus in Romano-British ironwork. For this purpose, two Romano-British iron artifacts from the site of Ircheoter, Northamptonshire, were examined using powerful techniques for archeological materials analysis that include electron microprobe, secondary ion mass spectroscopy (SIMS), transmission electron microscopy (TEM) with energydispersive x-ray spectroscopy capabilities (EDXS), and Auger electron spectroscopy (AES). It was found that phosphorous was indeed present in the artifacts. The phosphorus atoms were predominantly segregated at grain boundaries and thus should have led to a lowering of grain boundary cohesion and a degradation in the performance of the tools.


Sign in / Sign up

Export Citation Format

Share Document