scholarly journals Effect of the carbonyl iron particles on damping properties of magnetorheological elastomers based on natural rubber

2016 ◽  
Author(s):  
Fatemeh Seidabdi ◽  
Milad Mehranpour ◽  
Abdolreza Ohadi
2019 ◽  
Vol 31 (3) ◽  
pp. 339-348 ◽  
Author(s):  
Xincheng Song ◽  
Wenju Wang ◽  
Fufeng Yang ◽  
Guoping Wang ◽  
Xiaoting Rui

Magnetorheological elastomers are one kind of smart materials which consist of matrix materials and magnetic particles. The mechanical properties of magnetorheological elastomers were controllable under an external magnetic field. Applications of magnetorheological elastomers are limited as a result of their poor magnetorheological effect and mechanical performance, so enhancing the magnetorheological effect of them is critical for their application. Styrene-ethylene-butylene-styrene based thermoplastic elastomer was added to natural rubber to fabricate hybrid matrix–based magnetorheological elastomers. Zero modulus of magnetorheological elastomers increased from 0.50 to 0.64 MPa and magnetorheological effect increased from 28.00% to 43.75% with the addition of styrene-ethylene-butylene-styrene based thermoplastic elastomer. The contact angle of carbonyl iron particles with the matrix showed that styrene-ethylene-butylene-styrene based thermoplastic elastomer can improve the compatibility of carbonyl iron particles with the matrix. Fourier-transform infrared spectroscopy analysis has been carried out to investigate the internal structure of hybrid matrix–based magnetorheological elastomers.


2019 ◽  
Vol 7 (4.14) ◽  
pp. 529
Author(s):  
Ku Zarina Ku Ahmad ◽  
MHA Khairi ◽  
SA Mazlan

Magnetorheological elastomers (MREs) are categorized as part of the smart materials class whose rheological properties can be altered under the influence of a magnetic field. MREs are fabricated by embedding soft magnetic particles such as carbonyl iron particles (CIPs) in a rubber matrix such as silicone and natural rubber. In this project, epoxidized natural rubber (ENR-50) is used as a base material with carbonyl iron particles. Sucrose Acetate Isobutyrate (SAIB) ester is added to the formulation to improve the viscosity and enhance the MRE properties. The isotropic MRE is fabricated using two roll mill and a compression mould. Various tests comprise mechanical, morphology, thermal and magnetic tests were conducted for MRE characterization purpose. The results showed that the addition of SAIB on the MRE had reduced 53% of viscosity in the rubber matrix compared to non-ester based MRE. Dispersion of magnetic particles is improved by the addition of ester as observed through Field Emission Scanning Electron Microscope (FESEM). Additionally, the thermal stability was also improved. Tensile strength of MRE consisting SAIB ester achieved maximum strength of 12.3 MPa and an elongation of 620% compared to non-ester based MRE.  


2018 ◽  
Vol 772 ◽  
pp. 61-65
Author(s):  
Muntaz Hana Ahmad Khairi ◽  
Saiful Amri Mazlan ◽  
Ubaidillah ◽  
Siti Aishah Abdul Aziz ◽  
Norhiwani Mohd Hapipi

This study introduces a sucrose acetate isobutyrate (SAIB) as an additive of magnetorheological elastomers (MREs) to be added in silicone rubber matrix and carbonyl iron particles (CIPs) as their filler. The CIPs were fixed at 60 wt% and two types of MREs sample were fabricated which are isotropic and anisotropic. Rheological properties related to shear storage modulus were measured using a rheometer (MCR 302, Anton Paar). The experimental results demonstrated that the magnetorheological (MR) effect of anisotropic MREs-based Silicone/SAIB was 126 % as compared to isotropic MREs-based Silicone/SAIB, 64%. The fabricated MREs samples were frequency and strain dependent. The relative MR effect for both samples showed decreasing trend with the increment of strain amplitude and excitation frequency.


2010 ◽  
Vol 636-637 ◽  
pp. 766-771 ◽  
Author(s):  
Anna Boczkowska ◽  
Stefan F. Awietjan

Magnetorheological elastomers (MREs) were obtained by mixing soft polyurethane and carbonyl-iron particles. The effect of the volume fraction of the ferromagnetic particles on the MREs microstructure and properties, as well as their arrangement in relation to the external magnetic field were investigated. As a ferromagnetic component carbonyl–iron powder, with particle size from 6-9µm, was used. The amount of the carbonyl iron particles was varied from 1.5 to 33.0 %(v/v). The samples were produced with randomly dispersed and aligned carbonyl iron particles. Scanning electron and light microscopy techniques were used for the MRE microstructure observations. The rheological properties (G’, G’’ and tan δ) of the MRE were tested without and with the application of the magnetic field. It was found that the microstructure of MREs, particularly the amount and arrangement of the carbonyl-iron particles, has a significant influence on their rheological and damping properties.


2020 ◽  
Vol 29 (5) ◽  
pp. 055005 ◽  
Author(s):  
Yanfen Zhou ◽  
Lele Li ◽  
Wenyue Li ◽  
Shipeng Wen ◽  
Liang Jiang ◽  
...  

2020 ◽  
Vol 59 (7) ◽  
pp. 469-476
Author(s):  
Joanes Berasategi ◽  
Daniel Salazar ◽  
Ainara Gomez ◽  
Jon Gutierrez ◽  
María San Sebastián ◽  
...  

Author(s):  
Md. Najib Alam ◽  
Vineet Kumar ◽  
Sang-Ryeoul Ryu ◽  
Jungwook Choi ◽  
Dong-Joo Lee

This work examines magneto-rheological elastomers (MREs) based on isotropic and anisotropic distribution of carbonyl iron particles (CIP) in natural rubber (NR) and acrylonitrile butadiene rubber (NBR). Measurements of the compressive mechanical properties were done to determine the isotropic and anisotropic properties of the MREs. Scanning electron microscopy (SEM) and optical microscopy were employed to study the CIP filler mixing behavior in the rubber matrix and orientation of particles in an anisotropic state. CIP-NBR composites show higher ultimate compressive stress in both isotropic and anisotropic states than NR-based composites. NBR-based composites show positive increases in both the elastic modulus and compressive stress at higher deformation when changing from isotropic to anisotropic, whereas NR-based composites show a positive increase in the elastic modulus and a decrease in the compressive stress. Elastic modulus measurements of anisotropic composites under a magnetic field suggest that NBR composites have much better field-dependent magnetic properties than NR composites. Anti-stress-relaxation measurements indicate that NBR composites have better magnetic effect than NR composites. The better performance of NBR-based anisotropic composites in field-dependent and independent behaviors might be due to better filler distribution, a greater number of chain-like filler structures, and less aggregation of the chain-like filler strands. The MREs based on NBR could be more useful than NR for wide range of magneto rheological applications.


2008 ◽  
Vol 587-588 ◽  
pp. 630-634 ◽  
Author(s):  
Anna Boczkowska ◽  
Stefan F. Awietjan

The aim of the study was to develop an innovative processing method of magnetorheological elastomers (MRE). This method comprises optimization of the MRE structure in the context of their performance in the magnetic field. The influence of the amount of ferromagnetic particles and their arrangement in relation to the external magnetic field was investigated. Urethane magnetorheological elastomers were manufactured using polyurethane gels, supplied by Dow Chemical Company. As the ferromagnetic carbonyl–iron powder with particles size from 6-9)m produced by Fluka was used. The amount of the carbonyl iron particles was varied from 1.5 to 33.0 vol. %. Magnetic field strengths used during the fabrication of MRE were 0.1 and 0.3 T. The samples with particle chains aligned or slopped at 45 degree to the long sample axis were produced. To evaluate the external magnetic field effect on the magnetorheological properties a deflection in the magnetic field was measured. Samples were placed parallel to the magnetic field lines and deflected prior to the application of a magnetic field. After the application of the magnetic field the sample tended to straighten which was measured by displacement sensor. Magnetic field in a range of 0-0.9 T has been applied. Also the compression tests were carried out without and within external magnetic field with the strength of 0.3 T. The experiment showed that application of the magnetic field increases stiffness of the material. The amount of iron particles and their arrangement have influence on the stress-strain curves course.


2007 ◽  
Vol 21 (28n29) ◽  
pp. 4875-4882 ◽  
Author(s):  
X. L. GONG ◽  
L. CHEN ◽  
J. F. LI

This paper presents two kinds of magnetorheological elastomers (MREs). One is composed of appropriate silicon rubber, carbonyl iron particles and some other materials. It is cured under a strong magnetic field at a room temperature. Its shear modulus change from 0.34MPa at zero magnetic field to 3.34MPa at 1T magnetic field, the relative MR effect reaches 878%. Such high MR effect has not been reported until now. The other is composed by appropriate natural rubber, carbonyl iron particles and some other materials. After the compositions are mixed in a two-roll mill, they are cured under a strong magnetic field according to a temperature profile. The increment of its modulus reaches 3.6MPa, and the relative modulus increment is 133%. Their mechanical properties are also evaluated. All observed results show that the fabricated MREs are utilizable. They have successfully been utilized to adaptive tuned vibration absorbers, which will serve for vibration absorption of vehicles.


Sign in / Sign up

Export Citation Format

Share Document