Thickness and grain-size dependence of ferroelectric properties in columnar-grained BaTiO3 thin films

2018 ◽  
Vol 124 (14) ◽  
pp. 144103 ◽  
Author(s):  
Qingnan Zhang ◽  
Yu Su
2002 ◽  
Vol 16 (28n29) ◽  
pp. 4469-4474 ◽  
Author(s):  
KYOUNG-TAE KIM ◽  
CHANG-IL KIM ◽  
DONG-HEE KANG ◽  
IL-WUN SHIM

The Bi 3.25 La 0.75 Ti 3 O 12 (BLT) thin films were prepared by metalorganic decomposition method. The effect of grain size on the ferroelectric properties during crystallization were investigated by x-ray diffraction and field emission scanning electron microscope. The grain size and the roughness of BLT films increase with increasing of drying temperature. The leakage current densities of the BLT thin film with large grains are higher than that with small grains. The remanent polarization of BLT increase with increasing grain size. As compared BLT with small grain size, the BLT film with larger grain size shows better fatigue properties. This may be explained that small grained films shows more degradation of switching charge than large grained films.


2008 ◽  
Vol 368-372 ◽  
pp. 1814-1816
Author(s):  
Dan Xie ◽  
Zhi Gang Zhang ◽  
Tian Ling Ren ◽  
Li Tian Liu

{0.75SrBi2Ta2O9-0.25Bi3TiTaO9}(SBT-BTT) thin films were prepared by the modified metalorganic solution deposition (MOSD) technique. The microstructure and ferroelectric properties of SBTBTT thin films were studied. The SBT-BTT thin films were produced at 750°C. The grain size and surface roughness of SBT-BTT films showed significant enhancement with an increase in annealing temperatures. It is found that SBT-BTT thin films have good ferroelectric properties. The measured remanent polarization values for SBT-BTT, SBT and BTT capacitors were 15, 7.5 and 4.8μC/cm2, respectively. The coercive field for SBT-BTT capacitors was 50kV/cm. More importantly, the polarization of SBT-BTT capacitors only decreased 5% after 1011 switching cycles at a frequency of 1MHz.


1986 ◽  
Vol 4 (5-7) ◽  
pp. 313-315 ◽  
Author(s):  
A.F. Jankowski ◽  
J.F. Shewbridge

1997 ◽  
Vol 12 (6) ◽  
pp. 1569-1575 ◽  
Author(s):  
Tze-Chiun Chen ◽  
Tingkai Li ◽  
Xubai Zhang ◽  
Seshu B. Desu

The effect of excess bismuth on the ferroelectric properties of SrBi2Ta2O9 (SBT) thin films having a perovskite-like layered structure was investigated for excess bismuth contents ranging from 0% to 100%. For the first time, a limited solid solution of SBT and Bi2O3 was shown to exist when the amount of excess Bi was less than 50%. The formation of a solid solution enhanced the grain size and a-b plane orientation of the films, resulting in substantial improvement in the ferroelectric hysteresis properties of the films. On the other hand, when the amount of excess Bi exceeded 50%, Bi2O3 appeared as a second phase which led to high leakage current and poor ferroelectric hysteresis curves. 30–50% excess Bi content was found to be the optimum composition with respect to grain size, crystallographic orientation, and single phase formation. Within this range, SBT films exhibit low leakage current density (˜10−9 A/cm2) and maximum remanent polarization (2Pr ˜12 µC/cm2).


1994 ◽  
Vol 361 ◽  
Author(s):  
Kazushi Amanuma ◽  
Takashi Hase ◽  
Yoicht Mtyasaka

ABSTRACTStructural and electrical properties were investigated for chemically prepared SrBi2Ta2O9(SBT) thin films on Pt/Ti/SiO2/Si substrates. Good ferroelectric properties were obtained with a Pt top electrode: Pr=10.0μC/cm2 and Ec-34kV/cm. Au top electrodes resulted in smaller Pr. However, no fatigue was observed up to 109 switching cycles regardless of the top electrode material. Grains were spherical, not columnar, and the average grain size was 200nm. A marked structural change took place in the bottom Pt/Ti electrode during film preparation. The SIMS analysis indicates the reaction between Bi and Pt


1993 ◽  
Vol 8 (2) ◽  
pp. 237-238 ◽  
Author(s):  
C.V. Thompson

In recent experiments it has been shown that the yield stress of polycrystalline thin films depends separately on the film thickness and the grain size. It was also shown that the grain size dependence varies as the reciprocal of the grain size. In this paper an analysis is presented which leads to these results and provides a more detailed understanding of the origins of the observed behavior.


Sign in / Sign up

Export Citation Format

Share Document