Surface energy and thickness of surface layer of atomic-smooth metals silicides

2019 ◽  
Author(s):  
V. M. Yurov ◽  
E. N. Eremin ◽  
S. A. Guchenko ◽  
V. Ch. Laurinas
Keyword(s):  
2021 ◽  
Vol 23 (2) ◽  
pp. 59-62
Author(s):  
Yurov V.M. ◽  
◽  
Goncharenko V.I. ◽  
Oleshko V.S. ◽  
◽  
...  

In this work, we show how to calculate the surface energy anisotropy and the thickness of the surface layer of some magnetic nanostructures. As an example, the minerals of magnetite, ulvespineli, ilmenite andpseudobrukite, which have different crystal structures, are considered.


Forests ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 982 ◽  
Author(s):  
Demiao Chu ◽  
Jun Mu ◽  
Stavros Avramidis ◽  
Sohrab Rahimi ◽  
Shengquan Liu ◽  
...  

In continuation of our former study on a novel combined treatment of nitrogen–phosphorus fire retardant and thermomechanical densification on wood, this study focuses on the dynamic wettability and the bonding strength. The contact angle was measured using the sessile drop method and the surface energy was calculated according to the van Oss method. Water surface penetrating and spreading is analyzed by both the Shi and Gardner model and the droplet volume changing model. The results reveal that the combined treatment increased the surface energy, especially the acid–base component. The contact angle declined and the water droplet spread more easily on the surface. Meanwhile, the rate of relative droplet volume decreased by 32.6% because the surface layer was densified and stabilized by the combined process. Additionally, the surface possesses the lowest roughness and highest abrasion resistance on the tangential section. Thus, the bonding strength of the combined treated poplar decreased by 29.7% compared to that of untreated poplar; however, it is still 53.3% higher than that of 220 °C heat-treated wood.


2021 ◽  
Vol 103 (3) ◽  
pp. 101-114
Author(s):  
V.M. Yurov ◽  
◽  
A.T. Berdibekov ◽  
N.A. Belgibekov ◽  
K.M. Makhanov ◽  
...  

In our proposed empirical model, the anisotropy of the surface energy and the thickness of the surface layer of the high-entropy FeCrNiTiZrAl alloy are calculated. The thickness of the surface layer of this alloy is about 2 nm, which is an order of magnitude greater than the thickness of the surface layer of complex crystals, but is of the same order of magnitude as that of metallic glasses. The hardness and other properties of the high-entropy alloy are the same as for metallic glasses, but are 2-3 times higher than the hardness of stainless steels. The surface energy of the high-entropy FeCrNiTiZrAl alloy is about 2 J/m2, which corresponds to the surface energy of magnesium oxide and other crystals with a high melting point. However, unlike these crystals, the friction coefficients of a high-entropy alloy (~ 0.06) are much lower than that of ordinary steels (~ 0.8). We have theoretically shown that the friction coefficient is proportionally dependent on the surface energy and inversely proportional to the Gibbs energy, which significantly decreases for a high-entropy alloy, leading to low friction. The high hardness and low coefficient of friction of the high-entropy alloy facilitates the deposition of coatings from them on structural metal products, which contributes to their widespread use.


2021 ◽  
Vol 70 (1) ◽  
pp. 151-161
Author(s):  
В.М. Юров ◽  
В.И. Гончаренко ◽  
В.С. Олешко

The paper proposes an empirical model, which in combination with the model of A.I. Rusanov. makes it possible to calculate the anisotropy of the surface energy and the thickness of the surface layer of metals and their compounds. Calculations were made for six metal chalcogenides. The surface energy and the thickness of the surface layer have a significant effect on nanoelectronics, since in the nanoregion, size effects affect all physical effects


Author(s):  
Виктор Михайлович Юров ◽  
Владимир Иванович Гончаренко ◽  
Владимир Станиславович Олешко ◽  
Сергей Алексеевич Гученко

В работе рассмотрены вопросы анизотропии поверхностного слоя и анизотропии поверхностной энергии кубических кристаллов рутения. В основе этого рассмотрения лежит эмпирическая модель атомарно-гладких кристаллов, толщина поверхностного слоя которых зависит от одного фундаментального параметра -атомного объема элемента. Расчеты кристаллов рутения показали, что толщина поверхностного слоя кристаллов рутения во всех направлениях не превышает d (I) < 10 нм и они представляют собой наноструктуру. Кристаллы рутенийалюминий, рутенийгафний, рутенийтитан, рутенийцирконий имеют ơ > 3 Дж/м в направлении (100) . Нами рассмотрена задача о диффузии газа в нанометровой пластине рутения. В отличие от классической задачи в полученном уравнении появляется логарифмический член. Это приводит к расходимости в начале координат. Поэтому граничные условия нужно задавать не при x = 0, а при x = d (0) - длине де Бройлевской волны электронов. Только в этом случае имеют смысл классические уравнения диффузии. Существенно также, что, согласно полученному уравнению, диффузии нанопластины зависит как от материала пластины через коэффициент диффузии массивного образца, так и от размерного фактора. В классическом случае такой зависимости нет. Для описания фазовых переходов в наноструктурах предложены различные модели, среди которых можно отметить метод среднего поля Ландау, в котором используется параметр порядка. Мы воспользуемся теорией Ландау, заменяя температуру T на координату h . The paper deals with the anisotropy of the surface layer and the anisotropy of the free surface energy of cubic ruthenium crystals. This consideration is based on an empirical model of atomically smooth crystals, the thickness of the surface layer of which depends on single fundamental parameter - the atomic volume of an element. Calculations of ruthenium crystals showed that the thickness of the surface layer of ruthenium crystals in all directions does not exceed d(I)< 10 nm and they represent a nanostructure. Crystals of ruthenium aluminum, ruthenium hafnium, ruthenium titanium, ruthenium zirconium have ơ > 3 J/m in the (100) direction. We have considered the problem of gas diffusion in a nanometer ruthenium plate. In contrast to the classical problem, a logarithmic term appears in the resulting equation. This leads to divergence at the origin. Therefore, the boundary conditions must be specified not at x = 0, but at x = d (0) - the de Broglie wavelength of electrons. Only in this case the classical diffusion equations are meaningful. It is also important that, according to the obtained equation, the diffusion of the nanoplate depends both on the material of the plate through the diffusion coefficient of the bulk sample and on the size factor. In the classical case, there is no such dependence. Various models have been proposed to describe phase transitions in nanostructures, among which we can mention the Landau mean field method, in which the order parameter is used. We will use Landau's theory, replacing the temperature T with the coordinate h.


Author(s):  
Ирина Гусейновна Шебзухова ◽  
Людмила Павловна Арефьева

На базе электронно-статистического метода показана связь и проведена оценка поверхностной энергии и работы выхода электрона граней кристаллов лития с учетом дисперсионного, поляризационного и осцилляционного взаимодействия атомов поверхностного слоя. Считалось, что кристаллическая решетка не имеет дефектов. Модифицированы выражения поправок и аналитического соотношения, связывающего работу выхода электрона и поверхностную энергию с учетом типа кристаллической решетки и ориентации граней. Рассчитана работа выхода электрона и поверхностная энергия гладких граней при предельных температурах существования полиморфных фаз лития. Установлено влияние полиморфных превращений и температуры на анизотропию. Температурный коэффициент работы выхода электрона бездефектного кристалла положителен и составляет порядка 0,1-1 мэВ. Результаты расчетов хорошо согласуются с экспериментальными данными для поликристаллов. On the basis of the electronic-statistical method, a relationship is obtained and the surface energy and the work function of the electron of the faces of lithium crystals are estimated, taking into account the dispersion, polarization, and oscillatory interactions of the atoms of the surface layer. It was assumed that the crystal lattice has no defects. The expressions for the corrections and an analytical relationship between the work function of the electron and the surface energy are modified taking into account the type of the crystal lattice and the orientation of the faces. The work function of the electron and the surface energy of smooth faces are calculated at the limiting temperatures of the existence of polymorphic lithium phases. The influence of polymorphic transformations and temperature on the anisotropy is established. The temperature coefficient of the work function of an electron in a defect-free crystal is positive and amounts to about 0,1-1 meV. The calculation results are in good agreement with the experimental data for polycrystals.


2021 ◽  
Vol 18 (1) ◽  
pp. 9-15
Author(s):  
V.M. Yurov ◽  

In the work of Shebzukhova and Arefieva, by the method of electronic-statistical calculation of the anisotropy of the surface energy of metals, a method for estimating the work function of electrons from a metal was determined. The surface energy and electron work function of four main faces of cadmium and zinc crystals and five faces of mercury are estimated. In the work of Bokarev, the anisotropy of the surface energy of single crystals was calculated from the model of coordination melting of crystals. Based on experimental studies and theoretical calculations, it is shown that the model of coordination melting of crystals unambiguously links the physicochemical properties of the surface of single crystals with their crystal structure. In our proposed empirical model, not only the anisotropy is calculated, but also the thickness of the surface layer of the metal. It is shown that the thickness of the surface layer is determined by one fundamental parameter - the molar (atomic) volume, which periodically changes in accordance with the table of D.I. Mendeleev. It is shown in the work that the work function of electrons changes proportionally with a change in the surface energy of the metal. This means that the device we have developed can be used to measure the state of the metal surface and its anisotropy.


Author(s):  
D. N. Braski ◽  
P. D. Goodell ◽  
J. V. Cathcart ◽  
R. H. Kane

It has been known for some time that the addition of small oxide particles to an 80 Ni—20 Cr alloy not only increases its elevated-temperature strength, but also markedly improves its resistance to oxidation. The mechanism by which the oxide dispersoid enhances the oxidation resistance is being studied collaboratively by ORNL and INCO Alloy Products Company.Initial experiments were performed using INCONEL alloy MA754, which is nominally: 78 Ni, 20 Cr, 0.05 C, 0.3 Al, 0.5 Ti, 1.0 Fe, and 0.6 Y2O3 (wt %).Small disks (3 mm diam × 0.38 mm thick) were cut from MA754 plate stock and prepared with two different surface conditions. The first was prepared by mechanically polishing one side of a disk through 0.5 μm diamond on a syntron polisher while the second used an additional sulfuric acid-methanol electropolishing treatment to remove the cold-worked surface layer. Disks having both surface treatments were oxidized in a radiantly heated furnace for 30 s at 1000°C. Three different environments were investigated: hydrogen with nominal dew points of 0°C, —25°C, and —55°C. The oxide particles and films were examined in TEM by using extraction replicas (carbon) and by backpolishing to the oxide/metal interface. The particles were analyzed by EDS and SAD.


Sign in / Sign up

Export Citation Format

Share Document