scholarly journals Study on the thermal protection performance of superalloy honeycomb panels in high-speed thermal shock environments

2014 ◽  
Vol 4 (2) ◽  
pp. 021004 ◽  
Author(s):  
Dafang Wu ◽  
Anfeng Zhou ◽  
Liming Zheng ◽  
Bing Pan ◽  
Yuewu Wang
2015 ◽  
Vol 656-657 ◽  
pp. 237-242
Author(s):  
Kenji Yamaguchi ◽  
Tsuyoshi Fujita ◽  
Yasuo Kondo ◽  
Satoshi Sakamoto ◽  
Mitsugu Yamaguchi ◽  
...  

It is well known that a series of cracks running perpendicular to the cutting edge are sometimes formed on the rake face of brittle cutting tools during intermittent cutting. The cutting tool is exposed to elevated temperatures during the periods of cutting and is cooled quickly during noncutting times. It has been suggested that repeated thermal shocks to the tool during intermittent cutting generate thermal fatigue and result in the observed thermal cracks. Recently, a high speed machining technique has attracted attention. The tool temperature during the period of cutting corresponds to the cutting speed. In addition, the cooling and lubricating conditions affect the tool temperature during noncutting times. The thermal shock applied to the tool increases with increasing cutting speed and cooling conditions. Therefore, to achieve high-speed cutting, the evaluation of the thermal shock and thermal crack resistance of the cutting tool is important. In this study, as a basis for improving the thermal shock resistance of brittle cutting tools during high-speed intermittent cutting from the viewpoint of cutting conditions, we focused on the cooling conditions of the cutting operation. An experimental study was conducted to examine the effects of noncutting time on thermal crack initiation. Thermal crack initiation was found to be restrained by reducing the noncutting time. In the turning experiments, when the noncutting time was less than 10 ms, thermal crack initiation was remarkably decreased even for a cutting speed of 500 m/min. In the milling operation, the number of cutting cycles before thermal crack initiation decreased with increasing cutting speed under conditions where the cutting speed was less than 500 m/min. However, when the cutting speed was greater than 600 m/min, thermal crack initiation was restrained. We applied the minimal quantity lubrication (MQL) coolant supply to the intermittent cutting operation. The experimental results showed that the MQL diminished tool wear compared with that under the dry cutting condition and inhibited thermal crack initiation compared with that under the wet cutting condition.


2018 ◽  
Vol 172 ◽  
pp. 01007
Author(s):  
Harish Panjagala ◽  
E L N Rohit Madhukar ◽  
I Ravi Kiran

Due to increasing demand of High Speed Re-entry vehicles for Space activities within the world, a serious issue associated with the method of deceleration down a vehicle is by the intense heat generated because of development of stronger shocks at the nose. The price of thermal protection systems (TPS) to cut back the warmth generated by the return vehicles is extremely high. In this paper, the ultimate outcome is to cut back the aero heating which is achieved by introducing a spike at frontal region of the nose. Additionally, this spike avoids the deterioration and preserves the structural integrity of space vehicle over elevated temperatures. Further, four totally different geometries of tip specifically Blunt, Slender, Snap and Pan for the aerospike has been introduced and their impact on performance is evaluated and compared with the vehicle having TPS. Hence, usage of aerospike in return vehicles is the most successful and economical over different protection system.


2010 ◽  
Vol 654-656 ◽  
pp. 1924-1927 ◽  
Author(s):  
Hui Mei ◽  
Lai Fei Cheng ◽  
Ya Nan Liu ◽  
Li Tong Zhang

Thermal barrier coatings (TBCs) were deposited by an Air Plasma Spraying (APS) technique. The TBC coating comprised of 92 wt.% ZrO2 and 8 wt.% Y2O3 (YSZ), CoNiCrAlY bond coat, and MarM247 nickel base super alloy. After APS of YSZ two batches of TBC specimens were tested, one batch of which was pre-oxidised in air for 10h at 1080 oC. Both types of the specimens were directly pushed into a combustion gas at 1150 oC for 25 min and then out to the natural air for quenching. The combustion gas was produced by burning jet fuel with high speed air in a high temperature wind tunnel, which simulates the real service conditions in an aeroengine. Results show that TBCs prepared by the APS had good thermal shock resistance in the combustion gas. The pre-oxidation treatment of the TBC had a significant effect on its thermal shock life. The as-oxidised TBCs always had worse thermal shock resistance than the as-sprayed ones after thermal shock cycles.


2019 ◽  
Author(s):  
Vladislav N. Kovalnogov ◽  
Ruslan V. Fedorov ◽  
Larisa V. Khakhaleva ◽  
Andrei V. Chukalin ◽  
Aleksandr N. Zolotov

2018 ◽  
Vol 179 ◽  
pp. 02001
Author(s):  
Feng Wang ◽  
Dafang Wu ◽  
Haoyuan Ren

The determination of thermal insulation performance of thermal protection materials or structures is an indispensable and important step in the safety design of high speed flight vehicles. To obtain the temperature difference of the radiating surface for plate specimens under three different boundary conditions in heat insulation experiments (the specimens were placed either vertically or horizontally with the radiating surface facing down or horizontally with the radiating surface facing up), three thermal test setups were established to test the thermal insulation performance of light-weight ceramic specimens at different temperatures. The results show that the radiating surface temperature was the highest when the specimen was placed horizontally with the radiating surface facing down, while it was the lowest when the specimen was placed horizontally with the radiating surface facing up.The numerical calculation results agreed very well with the experimental ones, confirming the credibility and accuracy of the experimental results. The different thermal insulation performances of the plate specimens obtained under three different boundary conditions will provide important guidance for designers in the design of thermal protection systems for large cabins of high speed flight vehicles.


2011 ◽  
Vol 105-107 ◽  
pp. 220-226 ◽  
Author(s):  
Yun Dong Sha ◽  
Zhi Jun Gao ◽  
Fei Xu

Thin-walled structures of future hypersonic flight vehicles will encounter complex loadings and exhibit obvious nonlinear responses. The thermal loads from high speed flow or engine jet flow can cause thermal buckling of thin-walled structures, such as Thermal Protection System (TPS). If the structures are loaded with intense acoustic loads simultaneously, large deflection nonlinear response, including snap-through, can be induced. Snap-through will give rise to large amplitude stress cycles and non-zero mean stress, which can lessen the fatigue life markedly. Starting from Hooker’s Law with thermal components, the large deflection governing equations of motion for simply-supported plate under thermo-acoustic loadings are derived. The partial differential equation (PDE) of motion which is difficult to solve is then transformed with Galerkin’s method to the system of ordinary differential equations (ODE) under modal coordinates. The displacement responses under different combinations of temperature increments and sound pressure levels are calculated by employing Runge-Kutta method. Typical thermo-acoustic responses are predicted: 1) random vibration around pre-buckled equilibrium position, 2) persistent snap-through between post-buckled positions, 3) intermittent snap-through, 4) vibration around one of the two post-buckled positions. By dividing the restoring force term in the equation into linear term and nonlinear one, the evolutions of each term are obtained to illustrate the mechanism of thermo-acoustic response and the contributions of each force, including shear force, thermal force and membrane force. Thus a further insight into thermo-acoustic response has been achieved.


Author(s):  
V.A. Tovstonog

In modern technology, gas dynamic facilities with a flow path of a high-temperature working fluid are widely used. Their effectiveness largely depends on the maximum achievable temperature, which is to a great extent determined by the heat resistance of structural materials and thermal protection systems of the most heat-stressed structural units. Most often, mass transfer thermal protection methods using the coolant of fuel components are used in such plants. However, in some gas dynamic facilities, such as high-speed ramjet engines, the use of such methods is only sufficient to maintain an acceptable temperature level for the elements of the flow path itself. As for the thermal protection of the enclosing structural elements which are adjacent to the path, it can be provided with either uncooled screens or heat-insulating linings. The study gives a comparative assessment of the temperature regime and characteristics of alternative types of heat shields


2016 ◽  
Vol 719 ◽  
pp. 109-113
Author(s):  
Kenji Yamaguchi ◽  
Itaru Matsumoto ◽  
Tsuyoshi Fujita ◽  
Yasuo Kondo ◽  
Satoshi Sakamoto ◽  
...  

It is well-known that a series of cracks sometimes gets initiated perpendicular to the cutting edges on the rake faces of brittle cutting tools made of materials such as cemented carbide, ceramics, and cermet under high-speed intermittent cutting. The tools used in intermittent cutting processes are exposed to elevated temperatures during cutting and then cool quickly during the noncutting time. Previous studies have suggested that such repeated thermal shocks generate thermal stress in the tool and that the thermal cracks are then propagated by thermal fatigue. Recently, high-speed machining techniques have attracted the attention of researchers. To apply new cutting tool materials to this machining process, it is important to evaluate their thermal shock fatigue resistances. During high-speed intermittent cutting, the frequency of thermal shocks becomes high and the action area of the thermal shocks is limited to the rake face of the tool. Therefore, conventional thermal shock resistance evaluation methods are unsuitable for this case. Consequently, the authors have developed a new experimental evaluation method using a CO2 laser beam. In this study, we irradiated cemented carbide and TiN cermet cutting tools with the CO2 pulse laser beam and gauged the effectiveness of the proposed thermal shock fatigue resistance evaluation method. The results show a correlation between the thermal shock due to the CO2 pulse laser beam and those due to the intermittent cutting experiments.


Sign in / Sign up

Export Citation Format

Share Document