Molecular beam epitaxy of high-quality CuI thin films on a low temperature grown buffer layer

2020 ◽  
Vol 116 (19) ◽  
pp. 192105 ◽  
Author(s):  
S. Inagaki ◽  
M. Nakamura ◽  
N. Aizawa ◽  
L. C. Peng ◽  
X. Z. Yu ◽  
...  
Author(s):  
B. Riah ◽  
Julien Camus ◽  
Abdelhak Ayad ◽  
Mohammad Rammal ◽  
Raouia Zernadji ◽  
...  

This paper reports the effect of silicon substrate orientation and aluminum nitride buffer layer deposited by molecular beam epitaxy on the growth of aluminum nitride thin films deposited by DC magnetron sputtering technique at low temperature. The structural analysis has revealed a strong (0001) fiber texture for both substrates Si (100) and (111) and a hetero-epitaxial growth on few nanometers AlN buffer layer grown by MBE on Si (111) substrate. SEM images and XRD characterization have shown an enhancement in AlN crystallinity thanks to AlN (MBE) buffer layer. Raman spectroscopy indicated that the AlN film was relaxed when it deposited on Si (111), in compression on Si (100) and under tension on AlN buffer layer grown by MBE/Si (111) substrates, respectively. The interface between Si (111) and AlN grown by MBE is abrupt and well defined; contrary to the interface between AlN deposited using PVD and AlN grown by MBE. Nevertheless, AlN hetero-epitaxial growth was obtained at low temperature (<250°C).


CrystEngComm ◽  
2014 ◽  
Vol 16 (47) ◽  
pp. 10774-10779 ◽  
Author(s):  
Fangliang Gao ◽  
Lei Wen ◽  
Jingling Li ◽  
Yunfang Guan ◽  
Shuguang Zhang ◽  
...  

The effects of the thickness of the large-mismatched amorphous In0.6Ga0.4As buffer layer on the In0.3Ga0.7As epi-films grown on the GaAs substrate have been systematically investigated.


2010 ◽  
Vol 97 (19) ◽  
pp. 192501 ◽  
Author(s):  
Y. Maeda ◽  
K. Hamaya ◽  
S. Yamada ◽  
Y. Ando ◽  
K. Yamane ◽  
...  

1989 ◽  
Vol 160 ◽  
Author(s):  
Y.H. Lee ◽  
R.P. Burns ◽  
J.B. Posthill ◽  
K.J. Bachmann

AbstractThe growth of Mo overtayers and Mo-Ni multilayers on single crystal Ni(001) substrates is described. The nucleation and growth processes of these thin films were analyzed by LEED, XPS, AES and SEM and High Resolution AES investigations without breaking vacuum. Growth of Mo-Ni multilayer heterostructures on Ni(001) with ≈20Å periodicity is possible at low temperature (≈200 °C). At high temperature (≈550 °C) the growth proceeds by the Volmer-Weber mechanism preventing the deposition of small period multilayers. Annealing experiments on ultra-thin (<20Å) Mo overiayers deposited at 200 °C show an onset of interdiffusion at ≈ 550°C coupled to the generation of a new surface periodicity.


1999 ◽  
Vol 595 ◽  
Author(s):  
M. J. Jurkovic ◽  
L.K. Li ◽  
B. Turk ◽  
W. I. Wang ◽  
S. Syed ◽  
...  

AbstractGrowth of high-quality AlGaN/GaN heterostructures on sapphire by ammonia gassource molecular beam epitaxy is reported. Incorporation of a thin AlN layer grown at low temperature within the GaN buffer is shown to result in enhanced electrical and structural characteristics for subsequently grown heterostructures. AlGaN/GaN structures exhibiting reduced background doping and enhanced Hall mobilities (2100, 10310 and 12200 cm2/Vs with carrier sheet densities of 6.1 × 1012 cm−2, 6.0 × 1012 cm−2, and 5.8 × 1012 cm−2 at 300 K, 77 K, and 0.3 K, respectively) correlate with dislocation filtering in the thin AlN layer. Magnetotransport measurements at 0.3 K reveal well-resolved Shubnikov-de Haas oscillations starting at 3 T.


2020 ◽  
Vol 127 (24) ◽  
pp. 243901 ◽  
Author(s):  
S. P. Bommanaboyena ◽  
T. Bergfeldt ◽  
R. Heller ◽  
M. Kläui ◽  
M. Jourdan

2002 ◽  
Vol 743 ◽  
Author(s):  
C. D. Lee ◽  
R. M. Feenstra ◽  
J. E. Northrup ◽  
L. Lymperakis ◽  
J. Neugebauer

ABSTRACTM-plane GaN(1100) is grown by plasma assisted molecular beam epitaxy on ZnO(1100) substrates. A low-temperature GaN buffer layer is found to be necessary to obtain good structural quality of the films. Well oriented (1100) GaN films are obtained, with a slate like surface morphology. On the GaN(1100) surfaces, reconstructions with symmetry of c(2×2) and approximate “4×5” are found under N- and Ga-rich conditions, respectively. We propose a model for Ga-rich conditions with the “4×5” structure consisting of ≥ 2 monolayers of Ga terminating the GaN surface.


Sign in / Sign up

Export Citation Format

Share Document