Two-dimensional growth of ZnO epitaxial films on c-Al2O3 (0001) substrates with optimized growth temperature and low-temperature buffer layer by plasma-assisted molecular beam epitaxy

2005 ◽  
Vol 274 (3-4) ◽  
pp. 418-424 ◽  
Author(s):  
Yeon-Sik Jung ◽  
Oleg Kononenko ◽  
Jin-Sang Kim ◽  
Won-Kook Choi
2019 ◽  
Vol 19 (4) ◽  
pp. 542-547
Author(s):  
Agata Jasik ◽  
Iwona Sankowska ◽  
Andrzej Wawro ◽  
Jacek Ratajczak ◽  
Dariusz Smoczyński ◽  
...  

2004 ◽  
Vol 809 ◽  
Author(s):  
Kareem M. Shoukri ◽  
Yaser M. Haddara ◽  
Andrew P. Knights ◽  
Paul G. Coleman ◽  
Mohammad M. Rahman ◽  
...  

ABSTRACTSilicon-Germanium (SiGe) has become increasingly attractive to semiconductor manufacturers over the last decade for use in high performance devices. In order to produce thin layers of device grade SiGe with low concentrations of point defects and well-controlled doping profiles, advanced growth and deposition techniques such as molecular beam epitaxy (MBE) are used. One of the key issues in modeling dopant diffusion during subsequent processing is the concentration of grown-in point defects. The incorporation of vacancy clusters and vacancy point defects in 200nm SiGe/Si layers grown by molecular beam epitaxy over different buffer layers has been observed using beam-based positron annihilation spectroscopy. Variables included the type of buffer layer, the growth temperature and growth rate for the buffer, and the growth temperature and growth rate for the top layer. Different growth conditions resulted in different relaxation amounts in the top layer, but in all samples the dislocation density was below 106 cm−2. Preliminary results indicate a correlation between the size, type and concentration of vacancy defects and the buffer layer growth temperature. At high buffer layer growth temperature of 500°C the vacancy point defect concentration is below the PAS detectable limit of approximately 1015 cm−3. As the buffer layer growth is decreased to a minimum value of 300°C, large vacancy clusters are observed in the buffered layer and vacancy point defects are observed in the SiGe film. These results are relevant to the role played by point defects grown-in at temperatures below ∼350°C in modeling dopant diffusion during processing.


2020 ◽  
Vol 116 (19) ◽  
pp. 192105 ◽  
Author(s):  
S. Inagaki ◽  
M. Nakamura ◽  
N. Aizawa ◽  
L. C. Peng ◽  
X. Z. Yu ◽  
...  

2002 ◽  
Vol 743 ◽  
Author(s):  
C. D. Lee ◽  
R. M. Feenstra ◽  
J. E. Northrup ◽  
L. Lymperakis ◽  
J. Neugebauer

ABSTRACTM-plane GaN(1100) is grown by plasma assisted molecular beam epitaxy on ZnO(1100) substrates. A low-temperature GaN buffer layer is found to be necessary to obtain good structural quality of the films. Well oriented (1100) GaN films are obtained, with a slate like surface morphology. On the GaN(1100) surfaces, reconstructions with symmetry of c(2×2) and approximate “4×5” are found under N- and Ga-rich conditions, respectively. We propose a model for Ga-rich conditions with the “4×5” structure consisting of ≥ 2 monolayers of Ga terminating the GaN surface.


CrystEngComm ◽  
2014 ◽  
Vol 16 (46) ◽  
pp. 10721-10727 ◽  
Author(s):  
Fangliang Gao ◽  
Lei Wen ◽  
Yunfang Guan ◽  
Jingling Li ◽  
Xiaona Zhang ◽  
...  

The as-grown In0.53Ga0.47As epi-layer grown on Si substrate by using low-temperature In0.4Ga0.6As buffer layer with in-situ annealing is of a high degree of structural perfection.


1991 ◽  
Vol 256 ◽  
Author(s):  
H. Presting ◽  
U. Menczigar ◽  
G. Abstreiter ◽  
H. Kibbel ◽  
E. Kasper

ABSTRACTP-i-n doped short-period SimGen strained layer superlattices (SLS) are grown on (100) silicon substrates by low temperature molecular beam epitaxy (300C°<∼Tg<∼400C°). The SLS's are grown with period lengths around 10 monolayers (ML) to a thickness of 250nm on a rather thin (50nm) homogeneous Si1−ybGeyb alloy buffer layer serving as strain symmetrizing substrate. Photoluminescence at T=5K is observed for various SimGen SLS samples, the strongest signal was found for a Si5 Ge5 SLS. Samples with identical SLS's but different buffer layer composition and thicknesses are grown to study the influence of strain on the PL. Electroluminescence (EL) at the same energy range is observed from mounted SimGen SLS mesa and waveguide diodes up to T=130K – for the first time reported in strain symmetrized short-period SimGen SLS. The intensity and peak positon of the EL signal was found to be dependent on the injected electrical power.


Author(s):  
B. Riah ◽  
Julien Camus ◽  
Abdelhak Ayad ◽  
Mohammad Rammal ◽  
Raouia Zernadji ◽  
...  

This paper reports the effect of silicon substrate orientation and aluminum nitride buffer layer deposited by molecular beam epitaxy on the growth of aluminum nitride thin films deposited by DC magnetron sputtering technique at low temperature. The structural analysis has revealed a strong (0001) fiber texture for both substrates Si (100) and (111) and a hetero-epitaxial growth on few nanometers AlN buffer layer grown by MBE on Si (111) substrate. SEM images and XRD characterization have shown an enhancement in AlN crystallinity thanks to AlN (MBE) buffer layer. Raman spectroscopy indicated that the AlN film was relaxed when it deposited on Si (111), in compression on Si (100) and under tension on AlN buffer layer grown by MBE/Si (111) substrates, respectively. The interface between Si (111) and AlN grown by MBE is abrupt and well defined; contrary to the interface between AlN deposited using PVD and AlN grown by MBE. Nevertheless, AlN hetero-epitaxial growth was obtained at low temperature (&lt;250&deg;C).


2002 ◽  
Vol 743 ◽  
Author(s):  
E. Monroy ◽  
N. Gogneau ◽  
D. Jalabert ◽  
F. Enjalbert ◽  
E. Bellet-Amalnc ◽  
...  

ABSTRACTEpitaxial growth of quaternary AlGalnN compounds by plasma-assisted molecular beam epitaxy has been demonstrated. Two-dimensional growth is achieved under In excess, with a monolayer of In segregating at the growth front. The maximum In incorporation is significantly affected by the substrate temperature and the Al mole fraction of the alloy. This behavior has been attributed to the enhancement of In segregation due to the high binding energy of A1N compared to InN and GaN.


Sign in / Sign up

Export Citation Format

Share Document