scholarly journals Quantum-mechanical hydration plays critical role in the stability of firefly oxyluciferin isomers: State-of-the-art calculations of the excited states

2020 ◽  
Vol 153 (20) ◽  
pp. 201103
Author(s):  
Yoshifumi Noguchi ◽  
Miyabi Hiyama ◽  
Motoyuki Shiga ◽  
Hidefumi Akiyama ◽  
Osamu Sugino
Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3800
Author(s):  
Sebastian Krapf ◽  
Nils Kemmerzell ◽  
Syed Khawaja Haseeb Khawaja Haseeb Uddin ◽  
Manuel Hack Hack Vázquez ◽  
Fabian Netzler ◽  
...  

Roof-mounted photovoltaic systems play a critical role in the global transition to renewable energy generation. An analysis of roof photovoltaic potential is an important tool for supporting decision-making and for accelerating new installations. State of the art uses 3D data to conduct potential analyses with high spatial resolution, limiting the study area to places with available 3D data. Recent advances in deep learning allow the required roof information from aerial images to be extracted. Furthermore, most publications consider the technical photovoltaic potential, and only a few publications determine the photovoltaic economic potential. Therefore, this paper extends state of the art by proposing and applying a methodology for scalable economic photovoltaic potential analysis using aerial images and deep learning. Two convolutional neural networks are trained for semantic segmentation of roof segments and superstructures and achieve an Intersection over Union values of 0.84 and 0.64, respectively. We calculated the internal rate of return of each roof segment for 71 buildings in a small study area. A comparison of this paper’s methodology with a 3D-based analysis discusses its benefits and disadvantages. The proposed methodology uses only publicly available data and is potentially scalable to the global level. However, this poses a variety of research challenges and opportunities, which are summarized with a focus on the application of deep learning, economic photovoltaic potential analysis, and energy system analysis.


2013 ◽  
Vol 9 (S297) ◽  
pp. 344-348 ◽  
Author(s):  
R. C. Fortenberry

AbstractThe dipole-bound excited state of the methylene nitrile anion (CH2CN−) has been suggested as a candidate carrier for a diffuse interstellar band (DIB) at 803.8 nm. Its corresponding radical has been detected in the interstellar medium (ISM), making the existence for the anion possible. This work applies state-of-the-art ab initio methods such as coupled cluster theory to reproduce accurately the electronic excitations for CH2CN− and the similar methylene enolate anion, CH2CHO−. This same approach has been employed to indicate that 19 other anions may possess electronically excited states, five of which are valence in nature. Concurrently, in order to assist in the detection of these anions in the ISM, work has also been directed towards predicting vibrational frequencies and spectroscopic constants for these anions through the use of quartic force fields (QFFs). Theoretical rovibrational work on anions has thus far included studies of CH2CN−, C3H−, and is currently ongoing for similar systems.


2008 ◽  
Vol 83 (4) ◽  
pp. 2025-2028 ◽  
Author(s):  
Adam C. Smith ◽  
Kathy L. Poulin ◽  
Robin J. Parks

ABSTRACT Replication-defective adenovirus (Ad) vectors can vary considerably in genome length, but whether this affects virion stability has not been investigated. Helper-dependent Ad vectors with a genome size of ∼30 kb were 100-fold more sensitive to heat inactivation than their parental helper virus (>36 kb), and increasing the genome size of the vector significantly improved heat stability. A similar relationship between genome size and stability existed for Ad with early region 1 deleted. Loss of infectivity was due to release of vertex proteins, followed by disintegration of the capsid. Thus, not only does the viral DNA encode all of the heritable information essential for virus replication, it also plays a critical role in maintaining capsid strength and integrity.


Author(s):  
J. Sans ◽  
M. Resmini ◽  
J.-F. Brouckaert ◽  
S. Hiernaux

Solidity in compressors is defined as the ratio of the aerodynamic chord over the peripheral distance between two adjacent blades, the pitch. This parameter is simply the inverse of the pitch-to-chord ratio generally used in turbines. Solidity must be selected at the earliest design phase, i.e. at the level of the meridional design and represents a crucial step in the whole design process. Most of the existing studies on this topic rely on low-speed compressor cascade correlations from Carter or Lieblein. The aim of this work is to update those correlations for state-of-the-art controlled diffusion blades, and extend their application to high Mach number flow regimes more typical of modern compressors. Another objective is also to improve the physical understanding of the solidity effect on compressor performance and stability. A numerical investigation has been performed using the commercial software FINE/Turbo. Two different blade profiles were selected and investigated in the compressible flow regime as an extension to the low-speed data on which the correlations are based. The first cascade uses a standard double circular arc profile, extensively referenced in the literature, while the second configuration uses a state-of-the-art CDB, representative of low pressure compressor stator mid-span profile. Both profiles have been designed with the same inlet and outlet metal angles and the same maximum thickness but the camber and thickness distributions, the stagger angle and the leading edge geometry of the CDB have been optimized. The determination of minimum loss, optimum incidence and deviation is addressed and compared with existing correlations for both configurations and various Mach numbers that have been selected in order to match typical booster stall and choke operating conditions. The emphasis is set on the minimum loss performance at mid-span. The impact of the solidity on the operating range and the stability of the cascade are also studied.


2016 ◽  
Vol 55 (3) ◽  
pp. 723-741 ◽  
Author(s):  
Xiao-Ming Hu ◽  
Ming Xue ◽  
Petra M. Klein ◽  
Bradley G. Illston ◽  
Sheng Chen

AbstractMany studies have investigated urban heat island (UHI) intensity for cities around the world, which is normally quantified as the temperature difference between urban location(s) and rural location(s). A few open questions still remain regarding the UHI, such as the spatial distribution of UHI intensity, temporal (including diurnal and seasonal) variation of UHI intensity, and the UHI formation mechanism. A dense network of atmospheric monitoring sites, known as the Oklahoma City (OKC) Micronet (OKCNET), was deployed in 2008 across the OKC metropolitan area. This study analyzes data from OKCNET in 2009 and 2010 to investigate OKC UHI at a subcity spatial scale for the first time. The UHI intensity exhibited large spatial variations over OKC. During both daytime and nighttime, the strongest UHI intensity is mostly confined around the central business district where land surface roughness is the highest in the OKC metropolitan area. These results do not support the roughness warming theory to explain the air temperature UHI in OKC. The UHI intensity of OKC increased prominently around the early evening transition (EET) and stayed at a fairly constant level throughout the night. The physical processes during the EET play a critical role in determining the nocturnal UHI intensity. The near-surface rural temperature inversion strength was a good indicator for nocturnal UHI intensity. As a consequence of the relatively weak near-surface rural inversion, the strongest nocturnal UHI in OKC was less likely to occur in summer. Other meteorological factors (e.g., wind speed and cloud) can affect the stability/depth of the nighttime boundary layer and can thus modulate nocturnal UHI intensity.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Wei Zhou ◽  
Chengdong Wu ◽  
Dali Chen ◽  
Zhenzhu Wang ◽  
Yugen Yi ◽  
...  

Recently, microaneurysm (MA) detection has attracted a lot of attention in the medical image processing community. Since MAs can be seen as the earliest lesions in diabetic retinopathy, their detection plays a critical role in diabetic retinopathy diagnosis. In this paper, we propose a novel MA detection approach named multifeature fusion dictionary learning (MFFDL). The proposed method consists of four steps: preprocessing, candidate extraction, multifeature dictionary learning, and classification. The novelty of our proposed approach lies in incorporating the semantic relationships among multifeatures and dictionary learning into a unified framework for automatic detection of MAs. We evaluate the proposed algorithm by comparing it with the state-of-the-art approaches and the experimental results validate the effectiveness of our algorithm.


Author(s):  
Anurag Chapagain

Abstract: It is a well-known fact in physics that classical mechanics describes the macro-world, and quantum mechanics describes the atomic and sub-atomic world. However, principles of quantum mechanics, such as Heisenberg’s Uncertainty Principle, can create visible real-life effects. One of the most commonly known of those effects is the stability problem, whereby a one-dimensional point base object in a gravity environment cannot remain stable beyond a time frame. This paper expands the stability question from 1- dimensional rod to 2-dimensional highly symmetrical structures, such as an even-sided polygon. Using principles of classical mechanics, and Heisenberg’s uncertainty principle, a stability equation is derived. The stability problem is discussed both quantitatively as well as qualitatively. Using the graphical analysis of the result, the relation between stability time and the number of sides of polygon is determined. In an environment with gravity forces only existing, it is determined that stability increases with the number of sides of a polygon. Using the equation to find results for circles, it was found that a circle has the highest degree of stability. These results and the numerical calculation can be utilized for architectural purposes and high-precision experiments. The result is also helpful for minimizing the perception that quantum mechanical effects have no visible effects other than in the atomic, and subatomic world. Keywords: Quantum mechanics, Heisenberg Uncertainty principle, degree of stability, polygon, the highest degree of stability


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 954
Author(s):  
Dasheng Lu ◽  
Francisco Gámez ◽  
Patricia Haro-González

In recent years, optically trapped luminescent particles have emerged as a reliable probe for contactless thermal sensing because of the dependence of their luminescence on environmental conditions. Although the temperature effect in the optical trapping stability has not always been the object of study, the optical trapping of micro/nanoparticles above room temperature is hindered by disturbances caused by temperature increments of even a few degrees in the Brownian motion that may lead to the release of the particle from the trap. In this report, we summarize recent experimental results on thermal sensing experiments in which micro/nanoparticles are used as probes with the aim of providing the contemporary state of the art about temperature effects in the stability of potential trapping processes.


Sign in / Sign up

Export Citation Format

Share Document