Corn skin/polyester bio-composite: An experimental study on notch tensile strength

2021 ◽  
Author(s):  
Jefri Bale ◽  
Yufitriani Littik ◽  
Kristomus Boimau ◽  
Yeremias Pell ◽  
Dominggus Adoe ◽  
...  
2015 ◽  
Vol 60 (4) ◽  
pp. 2821-2826 ◽  
Author(s):  
A. Wierzba ◽  
S. Mróz ◽  
P. Szota ◽  
A. Stefanik ◽  
R. Mola

The paper presents the results of the experimental study of the three-layer Al-Mg-Al sheets rolling process by the ARB method. The tests carried out were limited to single-pass symmetric and asymmetric rolling processes. An Al-Mg-Al package with an initial thickness of 4 mm (1-2-1 mm) was subjected to the process of rolling with a relative reduction of 50%. To activate the shear band in the strip being deformed, an asymmetry factor of av=2 was applied. From the test results, an increase in the tensile strength of the multi-layer Al-Mg-Al sheets obtained from the asymmetric process was observed. Microhardness tests did not show any significant differences in aluminium layer between respective layers of sheets obtained from the symmetric and the asymmetric process. By contrast, for the magnesium layer, an increase in microhardness from 72 HV to 79 HV could be observed for the asymmetric rolling. The analysis of the produced Al-Mg-Al sheets shows that the good bond between individual layers and grain refinement in the magnesium layer contributed to the obtaining of higher mechanical properties in the multi-layer sheets produced in the asymmetric process compared to the sheets obtained from the symmetric process.


2020 ◽  
Vol 16 (31) ◽  
pp. 83-94
Author(s):  
Nosratollah Sarlak ◽  
Shahrouz Yousefzadeh ◽  
Amirhosein Nasrollah Barati ◽  
◽  
◽  
...  

2017 ◽  
Vol 50 (2) ◽  
pp. 41-62
Author(s):  
Ahmad Mardoukhi ◽  
Timo Saksala ◽  
Mikko Hokka ◽  
Veli-Tapani Kuokkala

This paper presents a numerical and experimental study on the mechanical behavior of plasma shocked rock. The dynamic tensile behavior of plasma shock treated Balmoral Red granite was studied under dynamic loading using the Brazilian disc test and the Split Hopkinson Pressure Bar device. Different heat shocks were produced on the Brazilian disc samples by moving the plasma gun over the sample at different speeds. Microscopy clearly showed that as the duration of the thermal shock increases, the number of the surface cracks and their complexity increases (quantified here as the fractal dimension of the crack patterns) and the area of the damaged surface grows larger as well. At the highest thermal shock duration of 0.80 seconds the tensile strength of the Brazilian disc sample drops by approximately 20%. In the numerical simulations of the dynamic Brazilian disc test, this decrease in tensile strength was reproduced by modeling the plasma shock induced damage using the embedded discontinuity finite element method. The damage caused by the plasma shock was modeled by two methods, namely by pre-embedded discontinuity populations with zero strength and by assuming that the rock strength is lowered and conform to the Weibull distribution. This paper presents a quantitative assessment of the effects of the heat shock, the surface microstructure and mechanical behavior of the studied rock, and a promising numerical model to account for the pre-existing crack distributions in a rock material.


2012 ◽  
Vol 226-228 ◽  
pp. 1597-1603 ◽  
Author(s):  
Jian Guo Yin ◽  
Chu Han Deng ◽  
Yu Guang Fu ◽  
Liu Chi Li

Characterized by light weight and high strength, cold-drawn galvanized cable wires are widely applied in all kinds of prestressed structures and cable structures. Investigation shows that cables are sensitive to corrosion. Severe corrosion of cables results in cable replacement which are costly, and even more, collapse of the whole bridge. In this paper, several tests were carried out to present the crack growth of wire in stress corrosion in different solutions. In particular, as Cl-, OH-, SO42- and NH4+ have major effect on stress corrosion in seawater and acid rain, these four kinds of ions are selected in tests. And all four kinds of corrosive solutions are tested with the concentration of 1.5 bsp and 3 bsp respectively. Effects on ultimate tensile strength and sensitivity of cable wires are different for each of chosen ions, and the increasing concentration for the same solution would drop ultimate tensile strength and the modulus of cable wires.


2017 ◽  
Vol 138 ◽  
pp. 247-253 ◽  
Author(s):  
Shunbo Zhao ◽  
Xinxin Ding ◽  
Mingshuang Zhao ◽  
Changyong Li ◽  
Songwei Pei

2019 ◽  
Vol 276 ◽  
pp. 01014
Author(s):  
I Made Alit Karyawan Salain ◽  
I Nyoman Sutarja ◽  
Teguh Arifmawan Sudhiarta

This experimental study presents the properties of highperformance concrete (HPC) made by partially replacing type I Portland cement (OPC) with class C fly ash (CFA). The purpose of this study is to examine, with hydration time, the development of the compressive strength, the splitting tensile strength and the permeability of HPC utilizing different quantity of CFA. Four HPC mixtures, C1, C2, C3, and C4, were made by utilizing respectively 10%, 20%, 30% and 40% of CFA as replacement of OPC, by weight. One control mixture, C0, was made with 0% CFA. The mix proportion of HPC was 1.00 binder: 1.67 fine aggregate: 2.15 coarse aggregate with water to binder ratio 0.32. In each mixture, it was added 5% silica fume and 0.6% superplasticizer of the weight of the binder. Tests of HPC properties were realized at the age of 1, 3, 7, 28, and 90 days. The results indicate that CFA used to partially replace OPC in HPC shows adequate cementitious and pozzolanic properties. The compressive strength and the splitting tensile strength of HPC increase while the permeability coefficient decreases with increasing hydration time. It is found that the optimum replacement of OPC with CFA is 10%, however the replacement up to 20% is still acceptable to produce HPC having practically similar harden properties with control mixture. At this optimum replacement and after 90 days of hydration, the compressive strength, the splitting tensile strength and the permeability coefficient can reach 68.9 MPa, 8.3 MPa and 4.6 E-11 cm/sec respectively. These results are 109%, 101%, and 48% respectively of those of control mixture.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Qifeng Guo ◽  
Xinghui Wu ◽  
Meifeng Cai ◽  
Shengjun Miao

To investigate the effects of offset notch on the fracture properties of rock beam under bending load, granite beam specimens with “one single offset notch” and “central and offset double notches” are made. A series of three-point bending beam tests on the specimens are carried out by controlling the displacement rate of central notch. The whole load-displacement (P-CMOD) curves are obtained. Experimental results show that the larger the distance between the offset notch and beam central is, the larger are the peak load and nominal strength of the specimen. The peak load and nominal strength for the “central and offset double notches” specimens are both larger than those for the “single central notch” specimen. A fracture model considering the effect of offset notch is developed, and the relationship between the offset notch parameter, tensile strength, and fracture toughness is established.


2016 ◽  
Vol 78 (5-4) ◽  
Author(s):  
Nurul Husna Rajhan ◽  
Hanizah Ab. Hamid ◽  
Azmi Ibrahim ◽  
Rozaina Ismail

Magnetorheological elastomers (MREs) have much interest in engineering applications. However, the mechanical properties of MREs are still under ongoing researches. This paper presents the results from tensile test, hardness and rebound test that were carried out in order to understand the mechanical properties of MRE with the influence of carbon black content. The addition of carbon black was varied with the amount of 20 pphr, 40 pphr and 60 pphr of carbon black. The development of the MRE composites was manufactured by following the conventional rubber compounding process. The optimum cure of each MRE composite was determined by using a Rheometer 100. The mechanical properties through tensile test were obtained by using an Instron Tensile Machine, meanwhile hardness and resilience were carried out by using Wallace Dead Load Hardness and Dunlop Tripsometer, respectively. The results of tensile strength were not consistent with the addition of carbon black. In meantime, hardness value increases as the carbon black increases. The decreasing pattern of MRE resilience could be observed when the carbon black content increases.


Sign in / Sign up

Export Citation Format

Share Document