scholarly journals Numerical study on hydrodynamic performance and flow noise of a hydrofoil with wavy leading-edge

AIP Advances ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 095105
Author(s):  
Fang Li ◽  
Qiaogao Huang ◽  
Guang Pan ◽  
Yao Shi
Author(s):  
Xiaoxu Du ◽  
Lianying Zhang

The hydrodynamic performance of the blended-wing-body underwater glider can be improved by opening a hole on the surface and applying the steady suction active flow control. In order to explore the influence law and mechanism of the steady suction active flow control on the lift and drag performance of the hydrofoil, which is the profile of the blended-wing-body underwater glider, based on the computational fluid dynamics (CFD) method and SST k-ω turbulence model, the steady suction active flow control of hydrofoil under different conditions is studied, which include three suction factors: suction angle, suction position and suction ratio, as well as three different flow states: no stall, critical stall and over stall. Then the influence mechanism in over stall flow state is further analyzed. The results show that the flow separation state of NACA0015 hydrofoil can be effectively restrained and the flow field distribution around it can be improved by a reasonable steady suction, so as to the lift-drag performance of NACA0015 hydrofoil is improved. The effect of increasing lift and reducing drag of steady suction is best at 90° suction angle and symmetrical about 90° suction angle, and it is better when the steady suction position is closer to the leading edge of the hydrofoil. In addition, with the increase of the suction ratio, the influence of steady suction on the lift coefficient and drag coefficient of hydrofoil is greater.


Author(s):  
Yibo Liang ◽  
Weichao Shi ◽  
Longbin Tao

Abstract Leading-edge tubercles have been investigating widely on the performance of foils in the last decade. In this study, the biomimetic tubercle design has been applied to the corner shape on a deep-draft semi-submersible. A numerical study on flow over a deep-draft semi-submersible (DDS) with a biomimetic tubercle corner shape was carried out to investigate the corner shape effects on the overall hydrodynamics and motion responses. The hydrodynamic performance of the biomimetic tubercle corner is compared with a traditional round corner design platform. It is demonstrated that, as the corner shape design changed, the motion responses alter drastically. In addition, the flow patterns were examined to reveal some insights into fluid physics due to the biomimetic tubercle corner design. The comprehensive numerical results showed that the three-dimensional effect, which causes spanwise flow, can be reduced by a continuous spanwise (column-wise) variation of the shear-layer separation points.


2018 ◽  
Vol 341 ◽  
pp. 151-163 ◽  
Author(s):  
Jie Gong ◽  
Chun-Yu Guo ◽  
Tie-Cheng Wu ◽  
Ke-Wei Song

Author(s):  
K. Vijaykumar ◽  
S. Poonkodi ◽  
A.T. Sriram

Sunroof has become one of the essential features of a luxury car, and it provides natural air circulation and good illumination into the car. But the primary problem associated with it is the buffeting noise which causes discomfort to the passengers. Though adequate studies were carried out on sunroof buffeting, efficient control techniques are needed to be developed from fundamental mechanism. To reduce the buffeting noise, flow modifications at the entrance of the sunroof is considered in this study. The internal portion of the car with sunroof is simplified into a shear driven open cavity, and two-dimensional numerical simulations are carried out using commercial solver, ANSYS Fluent. Reynolds averaged Navier-Stokes equation is used with the realizable k-? turbulence model. The unsteady numerical result obtained in this study is validated with the available experimental results for the dominant frequency. The prediction is good agreement with experiment. Flow modification technique is proposed to control the sunroof buffeting by implementing geometric modifications. A hump has been placed near the leading edge of the cavity which resulted in significant reduction of pressure oscillations. Parametric studies have been performed by varying the height of hump and the distance of hump from the leading edge. There is no prominent difference when the height of the hump is varied. As the distance of the hump from the leading edge is reduced, the sound pressure level decreases.


Author(s):  
Bo-lun Zhang ◽  
Li Zhang ◽  
Hui-ren Zhu ◽  
Jian-sheng Wei ◽  
Zhong-yi Fu

Film cooling performance of the double-wave trench was numerically studied to improve the film cooling characteristics. Double-wave trench was formed by changing the leading edge and trailing edge of transverse trench into cosine wave. The film cooling characteristics of transverse trench and double-wave trench were numerically studied using Reynolds Averaged Navier Stokes (RANS) simulations with realizable k-ε turbulence model and enhanced wall treatment. The film cooling effectiveness and heat transfer coefficient of double-wave trench at different trench width (W = 0.8D, 1.4D, 2.1D) conditions are investigated, and the distribution of temperature field and flow field were analyzed. The results show that double-wave trench effectively improves the film cooling effectiveness and the uniformity of jet at the downstream wall of the trench. The span-wise averaged film cooling effectiveness of the double-wave trench model increases 20–63% comparing with that of the transverse trench at high blowing ratio. The anti-counter-rotating vortices which can press the film on near-wall are formed at the downstream wall of the double-wave trench. With the double-wave trench width decreasing, the film cooling effectiveness gradually reduces at the hole center-line region of the downstream trench. With the increase of the blowing ratio, the span-wise averaged heat transfer coefficient increases. The span-wise averaged heat transfer coefficient of the double-wave trench with 0.8D and 2.1D trench width is higher than that of the double-wave trench with 1.4D trench width at the high blowing ratio conditions.


2018 ◽  
Vol 140 (12) ◽  
Author(s):  
Zhigang Li ◽  
Luxuan Liu ◽  
Jun Li ◽  
Ridge A. Sibold ◽  
Wing F. Ng ◽  
...  

This paper presents a detailed experimental and numerical study on the effects of upstream step geometry on the endwall secondary flow and heat transfer in a transonic linear turbine vane passage with axisymmetric converging endwalls. The upstream step geometry represents the misalignment between the combustor exit and the nozzle guide vane endwall. The experimental measurements were performed in a blowdown wind tunnel with an exit Mach number of 0.85 and an exit Re of 1.5×106. A high freestream turbulence level of 16% was set at the inlet, which represents the typical turbulence conditions in a gas turbine engine. Two upstream step geometries were tested for the same vane profile: a baseline configuration with a gap located 0.88Cx (43.8 mm) upstream of the vane leading edge (upstream step height = 0 mm) and a misaligned configuration with a backward-facing step located just before the gap at 0.88Cx (43.8 mm) upstream of the vane leading edge (step height = 4.45% span). The endwall temperature history was measured using transient infrared thermography, from which the endwall thermal load distribution, namely, Nusselt number, was derived. This paper also presents a comparison with computational fluid dynamics (CFD) predictions performed by solving the steady-state Reynolds-averaged Navier–Stokes with Reynolds stress model using the commercial CFD solver ansysfluent v.15. The CFD simulations were conducted at a range of different upstream step geometries: three forward-facing (upstream step geometries with step heights from −5.25% to 0% span), and five backward-facing, upstream step geometries (step heights from 0% to 6.56% span). These CFD results were used to highlight the link between heat transfer patterns and the secondary flow structures and explain the effects of upstream step geometry. Experimental and numerical results indicate that the backward-facing upstream step geometry will significantly enlarge the high thermal load region and result in an obvious increase (up to 140%) in the heat transfer coefficient (HTC) level, especially for arched regions around the vane leading edge. However, the forward-facing upstream geometry will modestly shrink the high thermal load region and reduce the HTC (by ∼10% to 40% decrease), especially for the suction side regions near the vane leading edge. The aerodynamic loss appears to have a slight increase (0.3–1.3%) because of the forward-facing upstream step geometry but is slightly reduced (by 0.1–0.3%) by the presence of the backward upstream step geometry.


2019 ◽  
Vol 12 (1) ◽  
pp. 99-119
Author(s):  
Khuder N. Abed

The aim of this paper is to control the flow separation above backward-facing step (BFS) airfoil type NACA 0015 by blowing method. The flow field over airfoil has been studied both experimentally and computationally. The study was divided into two parts: a practical study through which NACA 0015 type with a backward -facing step (located at 44.4% c from leading edge) on the upper surface containing blowing holes parallel to the airfoil chord was used. The tests were done over two-dimensional airfoil in an open circuit suction subsonic wind tunnel with flow velocity 25m/s to obtain the pressure distribution coefficients. A numerical study was done by using ANSYS Fluent software version 16.0 on three models of NACA 0015, the first one has backward-facing step without blowing, the second with single blowing holes and the third have multi blowing holes technique. Both studies (experimental and numerical) were done at low Reynolds number (Re=4.4x105) and all models have chord length 0.27m.The experimental investigations and CFD simulations have been performed on the same geometry dimensions, it has been observed that the flow separation on the airfoil can be delayed by using  velocity blowing (30m/s) on the upper surface. The multi blowing holes with velocity improved the aerodynamics properties.The multi blowing holes and single blowing hole thesame effect onpressure distribution coefficients


2019 ◽  
Vol 4 (7) ◽  
pp. 11-17
Author(s):  
Md. Abdus Salam ◽  
Vikram Deshpande ◽  
Nafiz Ahmed Khan ◽  
M. A. Taher Ali

The moving surface boundary control (MSBC) has been a Centre stage study for last 2-3 decades. The preliminary aim of the study was to ascertain whether the concept can improve the airfoil characteristics. Number of experimental and numerical studies pointed out that the MSBC can superiorly enhance the airfoil performance albeit for higher velocity ratios (i.e. cylinder tangential velocity to free stream velocity). Although abundant research has been undertaken in this area on different airfoil performances but no attempt was seen to study effect of MSBC on NACA0021 airfoil for and also effects of lower velocity ratios. Thus, present paper focusses on numerical study of modified NACA 0021 airfoil with leading edge rotating cylinder for velocity ratios (i.e.) between 1 to 1.78 at different angles of attack. The numerical study indicates that the modified airfoil possess better aerodynamic performance than the base airfoil even at lower velocity ratios (i.e. for velocity ratios 0.356 and beyond). The study also focusses on reason for improvement in aerodynamic performance by close look at various parameters.


Sign in / Sign up

Export Citation Format

Share Document