Investigation of effective parameters on streaming-induced acoustophoretic particle manipulation in a microchannel via three-dimensional numerical simulation

2022 ◽  
Vol 34 (1) ◽  
pp. 012008
Author(s):  
Sanaz Marefati ◽  
Majid Ghassemi ◽  
Vahid Ghazizadeh
1998 ◽  
Vol 26 ◽  
pp. 174-178 ◽  
Author(s):  
Peter Gauer

A physically based numerical model of drifting and blowing snow in three-dimensional terrain is developed. The model includes snow transport by saltation and suspension. As an example, a numerical simulation for an Alpine ridge is presented and compared with field measurements.


2021 ◽  
Vol 233 ◽  
pp. 109174
Author(s):  
Jinzhao Li ◽  
David R. Fuhrman ◽  
Xuan Kong ◽  
Mingxiao Xie ◽  
Yilin Yang

2020 ◽  
Vol 12 (1) ◽  
pp. 703-717
Author(s):  
Yin Wei ◽  
Wang Jiaqi ◽  
Bai Xiaomin ◽  
Sun Wenjie ◽  
Zhou Zheyuan

AbstractThis article analyzes the technical difficulties in full-section backfill mining and briefly introduces the technical principle and advantages of backfilling combined with caving fully mechanized mining (BCCFM). To reveal the strata behavior law of the BCCFM workface, this work establishes a three-dimensional numerical model and designs a simulation method by dynamically updating the modulus parameter of the filling body. By the analysis of numerical simulation, the following conclusions about strata behavior of the BCCFM workface were drawn. (1) The strata behavior of the BCCFM workface shows significant nonsymmetrical characteristics, and the pressure in the caving section is higher than that in the backfilling section. φ has the greatest influence on the backfilling section and the least influence on the caving section. C has a significant influence on the range of abutment pressure in the backfilling section. (2) There exits the transition area with strong mine pressure of the BCCFM workface. φ and C have significant effect on the degree of pressure concentration but little effect on the influence range of strong mine pressure in the transition area. (3) Under different conditions, the influence range of strong mine pressure is all less than 6 m. This article puts forward a control strategy of mine pressure in the transition area, which is appropriately improving the strength of the transition hydraulic support within the influence range (6 m) in the transition area according to the pressure concentration coefficient. The field measurement value of Ji15-31010 workface was consistent with numerical simulation, which verifies the reliability of control strategy of the BCCFM workface.


Author(s):  
Masoud Forsat ◽  
Mohammad Taghipoor ◽  
Masoud Palassi

AbstractThe present research exposes the investigation on three-dimensional modeling of the single and twin metro tunnels for the case of the Tehran metro line. At first, simulation implemented on the comparison of the ground movements in the single and twin tunnels. Then the simulation has been performed on the influence of effective parameters of EPB-TBM on the surface settlements throughout excavation. The overcutting, shield conicity, grouting, and the final lining system modeled and the influence of face supporting pressure, grout injection pressure, as well as the clear distance of the tunnels, has been analyzed. The initial results showed a valid ground settlement behavior. The maximum settlements occurred at the end of the shield tail and it was higher in the single tunnel. The face supporting pressure had more effect on the surface settlement in comparison to the grout injection pressure. By increasing the face pressure in the single tunnel, the place of maximum settlement moved back while the grout pressure is insignificant for decreasing the settlements. Furthermore, the influence of the clear distance in the twin tunnels led to zero after the length of 30 m. Accordingly, for more distances, the tunnels must be examined independently and as two different single tunnels.


Sign in / Sign up

Export Citation Format

Share Document