Flexible, Diagnosticity-Driven, Rather Than Fixed, Perceptually Determined Scale Selection in Scene and Face Recognition

Perception ◽  
1997 ◽  
Vol 26 (8) ◽  
pp. 1027-1038 ◽  
Author(s):  
Philippe G Schyns ◽  
Aude Oliva

Different classifications of an identical visual stimulus may require different perceptual properties from the visual input. How do processes of object and scene categorisation use the information associated with different perceptual spatial scales? One scenario suggests that recognition should use coarse blobs before fine-scale edges because scale usage is perceptually determined. However, perceptual determination neglects one important aspect of any recognition task: the information demands of the considered classification of the input. Evidence is reviewed suggesting that scale usage could be flexibly determined by the diagnosticity of scale-specific cues for different categorisations of scenes and faces.


Perception ◽  
1997 ◽  
Vol 26 (1_suppl) ◽  
pp. 295-295
Author(s):  
A Oliva ◽  
P G Schyns

When people categorise complex stimuli such as faces, they might flexibly use the perceptual information available from the visual input. Three experiments were run to test this hypothesis with two different categorisations (gender and expression) of identical face stimuli. Stimuli were hybrids (Schyns and Oliva, 1994 Psychological Science5 195 – 200): they combined either a man or a woman with a particular expression at a coarse spatial scale with a face of the opposite gender with a different expression at the fine spatial scale. In experiment 1 we tested whether a gender vs an expression categorisation task tapped preferentially into a different spatial scale of the hybrids. Results showed that expression was biased to the fine scale, but that gender was not biased. In experiment 2 the same task was replicated, following a learning of the identity of the faces. It was then found that gender also became biased to the fine scale. In experiment 3 the expression task was changed to an identification of each expression to establish whether this could revert the scale biases observed in experiments 1 and 2. Results suggest that different categorisations of identical faces use different perceptual cues. This suggests that the nature of a task changes the representation of a stimulus.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mulalo M. Muluvhahothe ◽  
Grant S. Joseph ◽  
Colleen L. Seymour ◽  
Thinandavha C. Munyai ◽  
Stefan H. Foord

AbstractHigh-altitude-adapted ectotherms can escape competition from dominant species by tolerating low temperatures at cooler elevations, but climate change is eroding such advantages. Studies evaluating broad-scale impacts of global change for high-altitude organisms often overlook the mitigating role of biotic factors. Yet, at fine spatial-scales, vegetation-associated microclimates provide refuges from climatic extremes. Using one of the largest standardised data sets collected to date, we tested how ant species composition and functional diversity (i.e., the range and value of species traits found within assemblages) respond to large-scale abiotic factors (altitude, aspect), and fine-scale factors (vegetation, soil structure) along an elevational gradient in tropical Africa. Altitude emerged as the principal factor explaining species composition. Analysis of nestedness and turnover components of beta diversity indicated that ant assemblages are specific to each elevation, so species are not filtered out but replaced with new species as elevation increases. Similarity of assemblages over time (assessed using beta decay) did not change significantly at low and mid elevations but declined at the highest elevations. Assemblages also differed between northern and southern mountain aspects, although at highest elevations, composition was restricted to a set of species found on both aspects. Functional diversity was not explained by large scale variables like elevation, but by factors associated with elevation that operate at fine scales (i.e., temperature and habitat structure). Our findings highlight the significance of fine-scale variables in predicting organisms’ responses to changing temperature, offering management possibilities that might dilute climate change impacts, and caution when predicting assemblage responses using climate models, alone.



2016 ◽  
Vol 170 ◽  
pp. 45-60 ◽  
Author(s):  
G. Montereale Gavazzi ◽  
F. Madricardo ◽  
L. Janowski ◽  
A. Kruss ◽  
P. Blondel ◽  
...  


2014 ◽  
Vol 369 (1643) ◽  
pp. 20130194 ◽  
Author(s):  
Michael D. Madritch ◽  
Clayton C. Kingdon ◽  
Aditya Singh ◽  
Karen E. Mock ◽  
Richard L. Lindroth ◽  
...  

Fine-scale biodiversity is increasingly recognized as important to ecosystem-level processes. Remote sensing technologies have great potential to estimate both biodiversity and ecosystem function over large spatial scales. Here, we demonstrate the capacity of imaging spectroscopy to discriminate among genotypes of Populus tremuloides (trembling aspen), one of the most genetically diverse and widespread forest species in North America. We combine imaging spectroscopy (AVIRIS) data with genetic, phytochemical, microbial and biogeochemical data to determine how intraspecific plant genetic variation influences below-ground processes at landscape scales. We demonstrate that both canopy chemistry and below-ground processes vary over large spatial scales (continental) according to aspen genotype. Imaging spectrometer data distinguish aspen genotypes through variation in canopy spectral signature. In addition, foliar spectral variation correlates well with variation in canopy chemistry, especially condensed tannins. Variation in aspen canopy chemistry, in turn, is correlated with variation in below-ground processes. Variation in spectra also correlates well with variation in soil traits. These findings indicate that forest tree species can create spatial mosaics of ecosystem functioning across large spatial scales and that these patterns can be quantified via remote sensing techniques. Moreover, they demonstrate the utility of using optical properties as proxies for fine-scale measurements of biodiversity over large spatial scales.



2016 ◽  
Vol 33 (S1) ◽  
pp. S367-S368
Author(s):  
N. Deltort ◽  
J.R. Cazalets ◽  
A. Amestoy ◽  
M. Bouvard

Studies on individuals without developmental disorder show that mental representation of self-face is subject to a multimodal process in the same way that the representation of the self-body is. People with autistic spectrum disorder (ASD) have a particular pattern of face processing and a multimodal integration deficit.The objectives of our study were to evaluate the self-face recognition and the effect of interpersonal multisensory stimulation (IMS) in individuals with ASD. We aimed to show a self-face recognition deficit and a lack of multimodal integration among this population.IMS consisted of the presentation of a movie displaying an unfamiliar face being touched intermittently, while the examiner applied the same stimulation synchronously or asynchronously on the participant. The effect resulting from IMS was measured on two groups with or without ASD by a self-face recognition task on morphing movies made from self-face and unfamiliar-face pictures.There was a significant difference between groups on self-recognition before stimulation. This result shows a self-face recognition deficit in individuals with ASD. Results for the control group showed a significant effect of IMS on self-face recognition in synchronous condition. This suggests the existence of an update of self-face mental representation by multimodal process. In contrast, there was no significant effect of IMS demonstrated in ASD group, suggesting a multimodal integration deficit for the constitution of self-representation in this population.Our results show the existence of a self-face recognition deficit in individuals with ASD, which may be linked to a lack of multimodal integration in the development of the self-face representation.Disclosure of interestThe authors have not supplied their declaration of competing interest.



2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Muhammad Sajid ◽  
Nouman Ali ◽  
Saadat Hanif Dar ◽  
Naeem Iqbal Ratyal ◽  
Asif Raza Butt ◽  
...  

Recently, face datasets containing celebrities photos with facial makeup are growing at exponential rates, making their recognition very challenging. Existing face recognition methods rely on feature extraction and reference reranking to improve the performance. However face images with facial makeup carry inherent ambiguity due to artificial colors, shading, contouring, and varying skin tones, making recognition task more difficult. The problem becomes more confound as the makeup alters the bilateral size and symmetry of the certain face components such as eyes and lips affecting the distinctiveness of faces. The ambiguity becomes even worse when different days bring different facial makeup for celebrities owing to the context of interpersonal situations and current societal makeup trends. To cope with these artificial effects, we propose to use a deep convolutional neural network (dCNN) using augmented face dataset to extract discriminative features from face images containing synthetic makeup variations. The augmented dataset containing original face images and those with synthetic make up variations allows dCNN to learn face features in a variety of facial makeup. We also evaluate the role of partial and full makeup in face images to improve the recognition performance. The experimental results on two challenging face datasets show that the proposed approach can compete with the state of the art.



2018 ◽  
Vol 30 (2) ◽  
pp. 300-308 ◽  
Author(s):  
Jessica Tardif ◽  
Xavier Morin Duchesne ◽  
Sarah Cohan ◽  
Jessica Royer ◽  
Caroline Blais ◽  
...  

Face-recognition abilities differ largely in the neurologically typical population. We examined how the use of information varies with face-recognition ability from developmental prosopagnosics to super-recognizers. Specifically, we investigated the use of facial features at different spatial scales in 112 individuals, including 5 developmental prosopagnosics and 8 super-recognizers, during an online famous-face-identification task using the bubbles method. We discovered that viewing of the eyes and mouth to identify faces at relatively high spatial frequencies is strongly correlated with face-recognition ability, evaluated from two independent measures. We also showed that the abilities of developmental prosopagnosics and super-recognizers are explained by a model that predicts face-recognition ability from the use of information built solely from participants with intermediate face-recognition abilities ( n = 99). This supports the hypothesis that the use of information varies quantitatively from developmental prosopagnosics to super-recognizers as a function of face-recognition ability.



2020 ◽  
Author(s):  
Anna Stumps ◽  
Elyana Saad ◽  
David Rothlein ◽  
Mieke Verfaellie ◽  
Joseph DeGutis

Converging lines of research suggests that many developmental prosopagnosics (DPs) have impairments beyond face perception, but currently no framework exists to characterize these impaired mechanisms. One potential extra-perceptual deficit is that DPs encode/retrieve faces in a distinct manner from controls that does not sufficiently support individuation. To test this possibility, 30 DPs and 30 matched controls performed an old/new face recognition task while providing confidence ratings, to which a model-based ROC analysis was applied. DPs had significantly reduced recollection compared to controls, driven by fewer ‘high-confidence target’ responses, but intact familiarity. Recollection and face perception ability uniquely predicted objective and subjective prosopagnosia symptoms, together explaining 51% and 56% of the variance, respectively. These results suggest that a specific deficit in face recollection in DP may represent a core aspect of the difficulty in confidently identifying an individual by their face.



2018 ◽  
Vol 108 (11) ◽  
pp. 1326-1336 ◽  
Author(s):  
Clive H. Bock ◽  
Carolyn A. Young ◽  
Katherine L. Stevenson ◽  
Nikki D. Charlton

Scab (caused by Venturia effusa) is the major disease of pecan in the southeastern United States. There is no information available on the fine-scale population genetic diversity or the occurrence of clonal types at small spatial scales that provides insight into inoculum sources and dispersal mechanisms, and potential opportunity for sexual reproduction. To investigate fine-scale genetic diversity, four trees of cultivar Wichita (populations) were sampled hierarchically: within each tree canopy, four approximately evenly spaced terminals (subpopulations) were selected and up to six leaflets (sub-subpopulations) were sampled from different compound leaves on each terminal. All lesions (n = 1 to 8) on each leaflet were sampled. The isolates were screened against a panel of 29 informative microsatellite markers and the resulting multilocus genotypes (MLG) subject to analysis. Mating type was also determined for each isolate. Of 335 isolates, there were 165 MLG (clonal fraction 49.3%). Nei’s unbiased measure of genetic diversity for the clone-corrected data were moderate to high (0.507). An analysis of molecular variance demonstrated differentiation (P = 0.001) between populations on leaflets within individual terminals and between terminals within trees in the tree canopies, with 93.8% of variance explained among isolates within leaflet populations. Other analyses (minimum-spanning network, Bayesian, and discriminant analysis of principal components) all indicated little affinity of isolate for source population. Of the 335 isolates, most unique MLG were found at the stratum of the individual leaflets (n = 242), with similar total numbers of unique MLG observed at the strata of the terminal (n = 170), tree (n = 166), and orchard (n = 165). Thus, the vast majority of shared clones existed on individual leaflets on a terminal at the scale of 10s of centimeters or less, indicating a notable component of short-distance dispersal. There was significant linkage disequilibrium (P < 0.001), and an analysis of Psex showed that where there were multiple encounters of an MLG, they were most probably the result of asexual reproduction (P < 0.05) but there was no evidence that asexual reproduction was involved in single or first encounters of an MLG (P > 0.05). Overall, the MAT1-1-1 and MAT1-2-1 idiomorphs were at equilibrium (73:92) and in most populations, subpopulations, and sub-subpopulations. Both mating types were frequently observed on the same leaflet. The results provide novel information on the characteristics of populations of V. effusa at fine spatial scales, and provide insights into the dispersal of the organism within and between trees. The proximity of both mating idiomorphs on single leaflets is further evidence of opportunity for development of the sexual stage in the field.



Author(s):  
José A. Juanes ◽  
Araceli Puente ◽  
Elvira Ramos

Ecological classification of coastal waters has become increasingly important as one of the basic issues in the biology of conservation. Management and protection of coastal areas take place at different spatial scales. Thus, proper classification schemes should integrate equivalent information at various levels of definition in order to show its feasibility as a useful tool for assessment of coastal environments at the required scales. In this work, a global approach applied to the classification of the NE Atlantic coast is analysed in order to discuss pros and cons regarding different conceptual and technical issues for effective implementation of such a management tool. Using the hierarchical system applied at three different geographic scales: Biogeographic (NE Atlantic coast), Regional (Bay of Biscay) and Local (Cantabria region), five different topics were considered for debating strengths and weaknesses of the methodological alternatives at those spatial scales, using for validation the rocky shore macroalgae as a representative biological element of benthic communities. These included: (i) the spatial scales; (ii) the physical variables and indicators; (iii) the classification methodologies; (iv) the biological information; and (v) the validation procedure. Based on that analysis, the hierarchical support system summarized in this paper provides a management framework for classification of coastal systems at the most appropriate resolution, applicable to a wide range of coastal areas. Further applications of the physical classification for management of biodiversity in different environmental scenarios are also analysed.



Sign in / Sign up

Export Citation Format

Share Document