Receptive Fields of Visual Neurons: The Early Years

Perception ◽  
10.1068/p7721 ◽  
2014 ◽  
Vol 43 (11) ◽  
pp. 1145-1176 ◽  
Author(s):  
Lothar Spillmann

This paper traces the history of the visual receptive field (RF) from Hartline to Hubel and Wiesel. Hartline (1938, 1940) found that an isolated optic nerve fiber in the frog could be excited by light falling on a small circular area of the retina. He called this area the RF, using a term first introduced by Sherrington (1906) in the tactile domain. In 1953 Kuffler discovered the antagonistic center—surround organization of cat RFs, and Barlow, Fitzhugh, and Kuffler (1957) extended this work to stimulus size and state of adaptation. Shortly thereafter, Lettvin and colleagues (1959) in an iconic paper asked “what the frog's eye tells the frog's brain”. Meanwhile, Jung and colleagues (1952–1973) searched for the perceptual correlates of neuronal responses, and Jung and Spillmann (1970) proposed the term perceptive field (PF) as a psychophysical correlate of the RF. The Westheimer function (1967) enabled psychophysical measurements of the PF center and surround in human and monkey, which correlated closely with the underlying RF organization. The sixties and seventies were marked by rapid progress in RF research. Hubel and Wiesel (1959–1974), recording from neurons in the visual cortex of the cat and monkey, found elongated RFs selective for the shape, orientation, and position of the stimulus, as well as for movement direction and ocularity. These findings prompted the emergence in visual psychophysics of the concept of feature detectors selective for lines, bars, and edges, and contributed to a model of the RF in terms of difference of Gaussians (DOG) and Fourier channels. The distinction between simple, complex, and hypercomplex neurons followed. Although RF size increases towards the peripheral retina, its cortical representation remains constant due to the reciprocal relationship with the cortical magnification factor (M). This constitutes a uniform yardstick for M-scaled stimuli across the retina. Developmental studies have shown that RF properties are not fixed. RFs possess their full response inventory already at birth, but require the interaction with appropriate stimuli within a critical time window for refinement and consolidation. Taken together these findings paved the way for a better understanding of how objective properties of the external world are encoded to become subjective properties of the subjective, perceptual world.

2021 ◽  
Author(s):  
Maude Wagner ◽  
Francine Grodstein ◽  
Karen Leffondre ◽  
Cécilia Samieri ◽  
Cécile Proust-Lima

Abstract Background: Long-term behavioral and health risk factors constitute a primary focus of research on the etiology of chronic diseases. Yet, identifying critical time-windows during which risk factors have the strongest impact on disease risk is challenging. To assess the trajectory of association of an exposure history with an outcome, the weighted cumulative exposure index (WCIE) has been proposed, with weights reflecting the relative importance of exposures at different times. However, WCIE is restricted to a complete observed error-free exposure whereas exposures are often measured with intermittent missingness and error. Moreover, it rarely explores exposure history that is very distant from the outcome as usually sought in life-course epidemiology.Methods: We extend the WCIE methodology to (i) exposures that are intermittently measured with error, and (ii) contexts where the exposure time-window precedes the outcome time-window using a landmark approach. First, the individual exposure history up to the landmark time is estimated using a mixed model that handles missing data and error in exposure measurement, and the predicted complete error-free exposure history is derived. Then the WCIE methodology is applied to assess the trajectory of association between the predicted exposure history and the health outcome collected after the landmark time. In our context, the health outcome is a longitudinal marker analyzed using a mixed model.Results: A simulation study first demonstrates the correct inference obtained with this approach. Then, applied to the Nurses’ Health Study (19,415 women) to investigate the association between body mass index history (collected from midlife) and subsequent cognitive decline (evaluated after age 70), the method identified two major critical windows of association: long before the first cognitive evaluation (roughly 24 to 12 years), higher levels of BMI were associated with poorer cognition. In contrast, adjusted for the whole history, higher levels of BMI became associated with better cognition in the last years prior to the first cognitive interview, thus reflecting reverse causation (changes in exposure due to underlying disease).Conclusions: This approach, easy to implement, provides a flexible tool for studying complex dynamic relationships and identifying critical time windows while accounting for exposure measurement errors.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Qixin Zhang ◽  
Liling Zeng ◽  
Xiuyan Chen ◽  
Yuexiang Zhou ◽  
Baoying Gong ◽  
...  

Background. Hypertensive intracerebral haemorrhage (HICH), which is characterized by rapid change, high morbidity, and mortality, is extremely dangerous. Both medical and surgical treatments lack definitive evidence and remain controversial. A prospective RCT that we have conducted has shown that the usage of the herbal medicine ICH-012 within 6 h of the event may increase the risk of haematoma enlargement and gastrointestinal bleeding. However, the volume of haematoma remains stable after 6 h. Thus, we will increase the time window to the period from 6 to 72 h after onset to evaluate the safety and efficacy of ICH-012 treating ICH (ClinicalTrial.gov ID: NCT03354026). Methods/Design. The CRRICHTrial-II study, a prospective, double-blinded, controlled, multicentre RCT, includes three groups: A, B, and C. Group A patients were treated with 8 herbal medicines (with 2 herbal medicines of Hirudo and Tabanus as well as 6 other combined herbal medicines of Group B) and Group C were placebo. Patients should meet all the inclusion criteria: age between 18 and 80 and diagnosis of HICH by brain CT scan between 6 and 72 h from the onset. The CT scan will be taken at four critical time points: baseline, between 6 and 72h, 24h after onset, and between 10 and 14 days after onset. The drug intervention lasts 10 days, and there is a follow-up visit taken after 90 days. The haematoma enlargement after 24 h onset as demonstrated by CT is the primary outcome. Discussion. A large amount of data from high-quality RCTs is needed for the extensive clinical application of herbal medicine. The CRRICHTrial-II will evaluate the safety and effectiveness of ICH-012 in a safer time window between 6 and 72 h and investigate the possible mechanisms of action and direction of herbal medicine in the haematoma growth after HICH. Trial registration at ClinicalTrial.gov, ID: NCT03354026, is registered on 23rd Nov. 2017.


Development ◽  
1960 ◽  
Vol 8 (2) ◽  
pp. 119-129
Author(s):  
J. D. Boyd ◽  
A. F. W. Hughes

In the early years of this century debate concerning the development of nerve fibres became more intense. During the previous decade, following the developmental studies of His (1883, 1886) and the early embryological studies of Ramon y Cajal (1890), the neurone theory as proclaimed by Waldeyer in 1891 seemed assured of victory; but when, with Apáthy and Bethe, new technical developments diverted attention from the whole neurone to its apparent constituents, the neurofibrillae, the simple concept of the outgrowth of the nerve fibre became enmeshed in complexity. Methods for their impregnation with silver were soon elaborated (Bielschowsky, 1904; Ramon y Cajal, 1903), and Held (1907) affirmed that a network of neurofibrillae preceded the appearance of the definitive nerve process. This claim became associated with the much older views of Hensen (1864, 1876) that protoplasmic strands were the forerunners of the nerve fibres and constituted a ground plan for the later development of the peripheral nervous system.


2016 ◽  
Vol 16 (3) ◽  
pp. 253-280 ◽  
Author(s):  
Jochen Teizer

Purpose The purpose of this paper is to investigate the critical time window for pro-active construction accident prevention and response. Large to small organisations throughout the entire construction supply chain continue to be challenged to adequately prevent accidents. Construction worker injuries and fatalities represent significant waste of resources. Although the five C’s (culture, competency, communication, controls and contractors) have been focusing on compliance, good practices and best-in-class strategies, even industry leaders have only marginal improvements in recorded safety statistics for many years. Design/methodology/approach Right-time vs real-time construction safety and health identifies three major focus areas to aid in the development of a strategic, as opposed to tactical, response. Occupational safety and health by design, real-time safety and health monitoring and alerts and education, training and feedback leveraging state-of-the-art technology provide meaningful predictive, quantitative and qualitative measures to identify, correlate and eliminate hazards before workers get injured or incidents cause collateral damage. Findings The current state and development of existing innovative initiatives in the occupational construction safety and health domain are identified. A framework for right-time vs real-time construction safety and health presents the specific focus on automated safety and health data gathering, analysis and reporting to achieve better safety performance. The developed roadmap for right-time vs real-time safety and health is finally tested in selected application scenarios of high concern in the construction industry. Originality/value A strategic roadmap to eliminate hazards and accidents through right-time vs real-time automation is presented that has practical as well as social implications on conducting a rigorous safety culture and climate in a construction business and its entire supply chain.


Contrast sensitivity as a function of spatial frequency was determined for 138 neurons in the foveal region of primate striate cortex. The accuracy of three models in describing these functions was assessed by the method of least squares. Models based on difference-of-Gaussians (DOG) functions were shown to be superior to those based on the Gabor function or the second differential of a Gaussian. In the most general case of the DOG models, each subregion of a simple cell’s receptive field was constructed from a single DOG function. All the models are compatible with the classical observation that the receptive fields of simple cells are made up of spatially discrete ‘on’ and ‘off’ regions. Although the DOG-based models have more free parameters, they can account better for the variety of shapes of spatial contrast sensitivity functions observed in cortical cells and, unlike other models, they provide a detailed description of the organization of subregions of the receptive field that is consistent with the physiological constraints imposed by earlier stages in the visual pathway. Despite the fact that the DOG-based models have spatially discrete components, the resulting amplitude spectra in the frequency domain describe complex cells just as well as simple cells. The superiority of the DOG-based models as a primary spatial filter is discussed in relation to popular models of visual processing that use the Gabor function or the second differential of a Gaussian.


2002 ◽  
Vol 22 (4) ◽  
pp. 1414-1425 ◽  
Author(s):  
Ildikó Kemenes ◽  
György Kemenes ◽  
Richard J. Andrew ◽  
Paul R. Benjamin ◽  
Michael O'Shea

Sign in / Sign up

Export Citation Format

Share Document