Effect of pasture management on the contributions of fixed N to the N economy of ley-farming systems

1998 ◽  
Vol 49 (3) ◽  
pp. 459 ◽  
Author(s):  
M. B. Peoples ◽  
R. R. Gault ◽  
G. J. Scammell ◽  
B. S. Dear ◽  
J. Virgona ◽  
...  

The effects of different management regimes on N2 fixation by subterranean clover (Trifolium subterraneum) in annual pastures and lucerne (Medicago sativa) in perennial-based pastures were examined in 5 experiments and 55 commercial paddocks, in which the pastures were grown in phased rotation with crops. The objectives were to quantify the inputs of fixed N2 and to determine ways of increasing nitrogen (N) inputs into ley-farming systems of southern New South Wales and north-eastern Victoria. Estimates of annual amounts of N2 fixed, based on above-ground herbage production in grazed pastures, ranged from 5 to 238 kg N/ha for subterranean clover and from 47 to 167 kg N/ha for lucerne. Legume reliance upon N2 fixation for growth (Pfix) was high (>65%) in most annual and perennial pastures examined. The levels of Pfix were generally unaffected by management treatments. As a consequence the amounts of N2 fixed were predominantly regulated by the legume content and herbage yield of pastures rather than by any marked differences in the ability of the legume to fix N. When all experimental results were combined with on-farm measurements of N2 fixation, the data indicated that lucerne and subterranean clover fixed 22-25 kg N for every tonne of legume dry matter produced. Management inputs to annual pastures which improved the productivity of subterranean clover and the amounts of N2 fixed included applications of superphosphate and the removal of grass species with herbicide, although the response to these treatments was not consistent across all sites in all years. Potential inputs from N2 fixation were high in annual pastures, and improved management during a good clover season enhanced the levels of mineral N detected in the soil profile (0-200 cm) the following autumn by 100-200 kg N/ha. However, year-to-year variability in annual pasture productivity and clover content resulted in large fluctuations in amounts of N2 fixed. Perennial pastures containing lucerne provided consistently greater annual herbage production, had more stable legume contents, and fixed on average 90-150% more N2 than neighbouring subterranean clover-based pastures. Even during the 1994 drought when annual pastures failed, lucerne still managed to fix >70 kg N/ha. It is proposed that lucerne-based pastures could represent a more reliable means of improving soil fertility for subsequent crops than annual pastures.


2011 ◽  
Vol 62 (3) ◽  
pp. 236 ◽  
Author(s):  
S. A. Conning ◽  
M. Renton ◽  
M. H. Ryan ◽  
P. G. H. Nichols

Biserrula (Biserrula pelecinus L.) is a recently domesticated annual pasture legume developed for ley farming systems that have traditionally relied upon subterranean clover (Trifolium subterraneum L.). This study examined competitive interactions between biserrula and subterranean clover and the common broad-leaf weed capeweed (Arctotheca calendula L.) during seedling establishment and vegetative growth, in order to develop guidelines for successful legume pasture management. Two glasshouse experiments were conducted to investigate the allocation of biomass to roots and shoots in biserrula, capeweed, and subterranean clover and its relationship with competitive ability in the first 100 days after sowing. In Experiment 1, capeweed had a higher relative growth rate of shoots and roots than the two legumes and developed a more extensive root system. Experiment 2 consisted of growing binary mixtures of the three species at different densities. The effect of competition on the biomass of biserrula, capeweed, and subterranean clover was best modelled by a power–exponential model. Increasing capeweed densities suppressed the biomass production of both biserrula and subterranean clover, whereas capeweed biomass increased with increasing densities of subterranean clover. This study suggests that the competitive advantage of capeweed is mainly conferred during the seedling stage. It also suggests that biserrula and subterranean clover germinating at the same time can co-exist as a mixed sward, at least up until flowering, if biserrula density is high relative to subterranean clover.



1999 ◽  
Vol 50 (6) ◽  
pp. 1047 ◽  
Author(s):  
B. S. Dear ◽  
M. B. Peoples ◽  
P. S. Cocks ◽  
A. D. Swan ◽  
A. B. Smith

The proportions of biologically fixed (Pfix) plant nitrogen (N) and the total amounts of N2 fixed by subterranean clover (Trifolium subterraneum L.) growing in pure culture and in mixtures with different densities (5, 10, 20, or 40plants/m2) of newly sown phalaris (Phalaris aquatica L.) or lucerne (Medicago sativa L.) were followed over 3 years in a field study using the 15N natural abundance technique. The amount of fixed N in subterranean clover was linearly related to shoot biomass. Over the 3-year period, subterranean clover fixed 23–34 kg N/t shoot biomass compared with 17–29 kg N/t shoot biomass in lucerne. Based on above-ground biomass, pure subterranean clover fixed 314 kg N/ha over the 3 years compared with 420–510 kg N/ha by lucerne–clover mixtures and 143–177 kg N/ha by phalaris–clover mixtures. The superior N2 fixation by the lucerneŒsubterranean clover mixtures was due to the N fixed by the lucerne and the presence of a higher subterranean clover biomass relative to that occurring in the adjacent phalaris plots. In the first year, 92% of subterranean clover shoot N was derived from fixation compared with only 59% of lucerne. The reliance of clover upon fixed N2 remained high (73–95%) throughout the 3 years in all swards, except in pure subterranean clover and lucerne in August 1996 (56 and 64%, respectively). Subterranean clover usually fixed a higher proportion of its N when grown in mixtures with phalaris than with lucerne. The calculated Pfix values for lucerne (47–61% in 1995 and 39–52% in 1996) were consistently lower than in subterranean clover and tended to increase with lucerne density. Although lucerne derived a lower proportion of its N from fixation than subterranean clover, its tissue N concentration was consistently higher, indicating it was effective at scavenging soil mineral N. It was concluded that including lucerne in wheat-belt pastures will increase inputs of fixed N. Although lucerne decreased subterranean clover biomass, it maintained or raised Pfix values compared with pure subterranean clover swards. The presence of phalaris maintained a high dependence on N2 fixation by subterranean clover, but overall these swards fixed less N due to the lower clover herbage yields. Perennial and annual legumes appear compatible if sown in a mix and can contribute more N2 to the system than where the annual is sown alone or with a perennial grass. These findings suggest that increases in the amount of N2 fixed can be achieved through different legume combinations without interfering greatly with the N fixation process. Different combinations may also result in more efficient use of fixed N2 through reduced leaching. Further work looking at combinations of annuals possibly with different maturity times, different annual and perennial legume combinations, and pure combinations of perennial (e.g. lucerne) could be investigated with the aim of maximising N2 fixation and use. Grazing management to encourage clover production in mixtures with phalaris will be necessary before the potential of subterranean clover to contribute fixed N2 in these swards is fully realised.



1996 ◽  
Vol 36 (5) ◽  
pp. 533 ◽  
Author(s):  
MJ Blumenthal ◽  
RL Ison

Murex medic (Medicago murex Willd.) seedling recruitment is more sensitive to soil water at the time of emergence than subterranean clover (Trifolium subterraneum L.). Murex medic pods normally lay on the soil surface. Shallow burial of pods may be beneficial when soil moisture is marginal for germination and emergence. In addition, the tightly coiled structure of murex medic pods may also act as a barrier to water uptake by the seed. Two methods of burying murex medic pods were investigated in the field: (i) trampling by sheep hooves through summer grazing; and (ii) through light cultivation in autumn. A glasshouse experiment was also conducted to examine the interaction between the length of time that the soil stays moist and pod burial for CD26 and CD53 murex medic and Dalkeith, Junee, Seaton Park and Woogenellup subterranean clover. In the glasshouse, pod burial was important for the attainment of maximum emergence in all genotypes when soil water was limiting. However, pod structure did not appear to have a limiting role in germination and emergence in murex medic. When tested in the field, pod burial by sheep trampling through summer grazing improved emergence in CD26, possibly because the smaller more open pod was more easily trampled than that of CD53. Summer grazing in CD53 and Dalkeith and autumn cultivation in all genotypes did not improve emergence; possible reasons for this are discussed so to is the role of murex medic in ley farming systems in eastern Australia.



1984 ◽  
Vol 35 (4) ◽  
pp. 539 ◽  
Author(s):  
JH Silsbury ◽  
D Zuill ◽  
PH Brown

Effects of constant temperatures of 10, 15, 20, 25 and 30�C on the germination, emergence and early vegetative growth of Trifolium subterraneum L. cv. Mt Barker grown as swards were examined in temperature-controlled glasshouses and in a growth cabinet. Seedlings were established at a density of about 2000 plants m-2 and grown for up to 70 days. Plants were either inoculated and grown without mineral nitrogen (-N), or supplied with 7.5 mM NO-3 (+ N). Percentage germination and emergence were hardly affected by temperatures of 10-20�C, but at 25�C were reduced to 50%, and at 30�C to about 10%. The rates of germination and emergence were slowest at 10�C, but showed little change with temperature over the range 15-30�C. Time to closed canopy (leaf area index 3) and time to a dry weight of 133 g m-2 were shorter where plants were supplied with NO; than where mineral nitrogen was withheld and a symbiotic system established. Rates of N2-fixation, as measured by acetylene reduction assay, were not markedly affected by temperature over the range 10-25�C. Relative efficiency ranged from about 0.55 at 10, 15, and 20�C to about 0.66 at 25�C. At 30�C nodulation still occurred, but nitrogenase activity was very slight. It is concluded that, where swards of subterranean clover are grown in the absence of any mineral N, a period of N-starvation limits growth during the time taken for symbiotic N2-fixation to become established. Such retardation of growth is small at about 20�C, but becomes more marked at lower and higher temperatures. The establishment of subterranean clover swards in soils of low N status are likely to be retarded following an early (March) or a late (July) start in the growing season. In such cases a 'starter' application of mineral nitrogen may promote the early growth of the legume.



1988 ◽  
Vol 39 (4) ◽  
pp. 605 ◽  
Author(s):  
J Evans ◽  
Z Hochman ◽  
GE O'Connor ◽  
GJ Osborne

Rhizobium trifolii and root nodulation were compared in acid and limed soil to investigate mechanisms by which current soil acidity on the slopes of southern New South Wales may reduce the growth of Trifolium subterraneum. Increasing soil pH increased both the rate at which Rhizobium trifolii colonized soil and the frequency of nodules/g root (NF). Thus, numbers of R. trifolii were greater in carbonate-treated soil throughout autumn and winter compared to unlimed soil. In limed soil R. trifolii were measured at 104-105/g soil as early as seedling germination, 40-200 x more than in unlimed soil. Despite this, by spring, the numbers of rhizobia in soil without lime reached large and even similar levels as occurred in limed soil. Subsequently, with the drying of soil in summer, the numbers of R. trifolii declined markedly in both untreated and limed soil. Maximum NF could not be achieved with addition of Ca without increase in pH. From the field observations and other research, a hypothetical model is proposed to explain how differences in the rates of change in rhizobial numbers due to acidity may determine nodulation (NF). Thus, it is suggested that, when there is a repetitive decline in numbers of R. trifolii to low levels in summer, their subsequent rate of increase in the following autumn influences nodule abundance. The production of DM in an acidic soil appeared to be limited by symbiotic N2 fixation since added N fertilizer removed lime response. The limitation to N2 fixation did not appear to be due to lower occupancy of nodules by Rhizobium strains with less potential for N2 fixation than those in limed soil. It is possible that the effect of acidity on NF influences DM, though sampling limitations made it difficult to generalize in this regard.



2004 ◽  
Vol 94 (5) ◽  
pp. 433-439 ◽  
Author(s):  
S.N. Johnson ◽  
P.J. Gregory ◽  
P.J. Murray ◽  
X Zhang ◽  
I.M. Young

AbstractThis study investigated the ability of neonatal larvae of the root-feeding weevil, Sitona lepidus Gyllenhal, to locate white clover Trifolium repens L. (Fabaceae) roots growing in soil and to distinguish them from the roots of other species of clover and a co-occurring grass species. Choice experiments used a combination of invasive techniques and the novel technique of high resolution X-ray microtomography to non-invasively track larval movement in the soil towards plant roots. Burrowing distances towards roots of different plant species were also examined. Newly hatched S. lepidus recognized T. repens roots and moved preferentially towards them when given a choice of roots of subterranean clover, Trifolium subterraneum L. (Fabaceae), strawberry clover Trifolium fragiferum L. (Fabaceae), or perennial ryegrass Lolium perenneL. (Poaceae). Larvae recognized T. repens roots, whether released in groups of five or singly, when released 25 mm (meso-scale recognition) or 60 mm (macro-scale recognition) away from plant roots. There was no statistically significant difference in movement rates of larvae.



2001 ◽  
Vol 41 (2) ◽  
pp. 187 ◽  
Author(s):  
R. Aldaoud ◽  
W. Guppy ◽  
L. Callinan ◽  
S. F. Flett ◽  
K. A. Wratten ◽  
...  

In 1995–96, a survey of soil samples from subterranean clover (Trifolium subterraneum L.) paddocks was conducted across Victoria, South Australia, New South Wales and Western Australia, to determine the distribution and the prevalence of races of Phytophthora clandestina (as determined by the development of root rot on differential cultivars), and the association of its occurrence with paddock variables. In all states, there was a weak but significant association between P. clandestina detected in soil samples and subsequent root rot susceptibility of differential cultivars grown in these soil samples. Phytophthora clandestina was found in 38% of the sampled sites, with a significantly lower prevalence in South Australia (27%). There were significant positive associations between P. clandestina detection and increased soil salinity (Western Australia), early growth stages of subterranean clover (Victoria), mature subterranean clover (South Australia), recently sown subterranean clover (South Australia), paddocks with higher subterranean clover content (Victoria), where herbicides were not applied (South Australia), irrigation (New South Wales and Victoria), cattle grazing (South Australia and Victoria), early sampling dates (Victoria and New South Wales), sampling shortly after the autumn break or first irrigation (Victoria), shorter soil storage time (Victoria) and farmer’s perception of root rot being present (Victoria and New South Wales). Only 29% of P. clandestina isolates could be classified under the 5 known races. Some of the unknown races were virulent on cv. Seaton Park LF (most resistant) and others were avirulent on cv. Woogenellup (most susceptible). Race 1 was significantly less prevalent in South Australia than Victoria and race 0 was significantly less prevalent in New South Wales than in South Australia and Western Australia. This study revealed extremely wide variation in the virulence of P. clandestina. The potential importance of the results on programs to breed for resistance to root rot are discussed. in South Australia.



1989 ◽  
Vol 29 (3) ◽  
pp. 361
Author(s):  
HL Davies ◽  
PP Mann ◽  
B Goddard

Two experiments on weaner production are reported. In experiment 1, the liveweight and wool production were measured in medium Peppin Merino sheep that grazed at 10.5 weanerstha 8 plots of a mixed Phalaris aquatica-subterranean clover pasture or 8 plots of annual pasture (Trifolium subterraneum cv. Woogenellup and volunteer annual grass species). This was repeated over 2 years using autumn-born sheep; 4 groups on each pasture type were offered no supplement, 2 groups a cereal supplement (340 goats), and 2 groups of supplement isoenergetic with the cereal group but having a high protein meal replace some of the cereal (250 g oats and 60 g protein). The feed supplement was offered over the summer (January-April). The sheep on 2 of the unsupplemented plots and 1 of the 2 plots receiving either a cereal or cereal + protein supplement were offered access to a composite mineral block formulated to meet the mineral requirements of sheep with the exception of cobalt and selenium. There were 16 sheep on each plot within each group of 16 weaners, 4 were given an intraruminal cobalt 'bullet', 4 were given 5 mg of selenium orally, 4 given cobalt plus selenium and 4 were untreated controls. Experiment 2 was in year 3 with spring-born weaners on the same plots. The mineral block treatment was discarded on the plots receiving supplement and the effect of supplementary feeding at the beginning of March was compared with feeding in early January; barley was also compared with oats and protein. The stocking rate was raised to 13.5 sheep/ha. There were no statistically significant differences in sheep liveweight due to pasture type in either of the years of experiment 1 or experiment 2. Supplementation with cereals or protein-fortified cereals resulted in a significantly ( P < 0.05) increased liveweight at the end of March (5.6 kg in year 1,2.4 kg in year 2 of experiment 1, and 2.5 kg in experiment 2), and wool production (0.49 kg clean wool in year 1 and 0.3 1 kg in year 2 in experiment 1, and 0.49 in experiment 2). There was a significant liveweight response on the perennial plots to selenium + cobalt in year 1 of experiment 1. All cobalt-treated sheep were heavier ( P < 0.001) in year 2. Neither selenium nor cobalt significantly affected liveweight in experiment 2. The proportion of Phalaris aquatica on the perennial pasture diminished from 18% to less than 9% by the end of year 2 in experiment 1. These results suggest that, if perennial pastures cannot be maintained, then their establishment in the south-west of Western Australia would not result in greater animal production than on annual pasture. Decisions on using supplements would be dependent upon feed and wool prices.



2004 ◽  
Vol 44 (12) ◽  
pp. 1165 ◽  
Author(s):  
A. M. Bowman ◽  
W. Smith ◽  
M. B. Peoples ◽  
J. Brockwell

Total productivity and legume nitrogen fixation (N2 fixation) in dryland pastures were examined in a 2 year study (1999–2001) on 118 farms in central-western New South Wales. Pasture exclosure cages, placed at 217 on-farm sites, were harvested on 7 occasions and the foliage hand-sorted according to species in order to measure shoot dry matter (DM). The separated legume shoot material collected in spring 1999 (52 different legume samples) and 2000 (76 different legume samples) from a subset of representative pastures (41 cages on 28 different farms in 1999, 32 cages on 25 different farms in 2000) was also analysed for concentration of nitrogen (%N) and 15N natural abundance. These data were subsequently used to calculate the proportion of the legume shoot N derived from atmospheric N (%Ndfa), comparative measures of the relative efficiency of N2 fixation (kg N fixed/t DM accumulated) and the amounts of shoot N fixed (kg N/ha). The survey encompassed 8 common pasture types, and 5 others that were less common, ranging from native perennial grass pastures with little legume content to lucerne (Medicago sativa L.) pastures with and without companion clovers. Fifteen legume species were found in the pastures, some only occasionally. Lucerne and white clover (Trifolium repens L.) were the only perennials. Mean spring estimates of %Ndfa were similar in 1999 and 2000 for lucerne (72 and 81%, respectively), rose clover (T. hirtum All., 82 and 77%) and annual medics (Medicago spp., 89 and 86%). For the remaining 12 legume species, measures of %Ndfa ranged from 64 to 95% and averaged 83%. Shoot %N contents were greater for lucerne than for the other 14 legumes and this was reflected in the comparative measures of N2 fixation which ranged from 14.5 kg N/t DM for rose clover to 25.7 kg N/t DM for lucerne in 2000. The most productive pasture type comprised lucerne plus balansa clover [T. michelianum Savi var. balansae (Boiss.) Azn.], white clover or arrowleaf clover (T. vesiculosum Savi), but all pasture types that contained lucerne were highly productive. Spring was the most productive season and summer the least. Lucerne was overwhelmingly the most productive legume and was responsible for >83% of the fixed N in those pastures that contained both lucerne and other legumes. Lucerne productivity was approximately uniform throughout the year whereas, for other pastures, especially those based on rose clover or subterranean clover (T. subterraneum L.), there were sharp peaks in spring and little or no dry matter production over summer. The presence of lucerne in pastures significantly (P<0.05) reduced broadleaf weeds. It was concluded that, where there are requirements in central-western New South Wales agriculture for uniform forage production throughout the year and a high input of fixed N, lucerne is substantially superior to other species.



2017 ◽  
Vol 68 (1) ◽  
pp. 11 ◽  
Author(s):  
Lindsay W. Bell ◽  
John Lawrence ◽  
Brian Johnson ◽  
Mark B. Peoples

Several new and existing short-term forage legumes could be used to provide nitrogen (N) inputs for grain crops in subtropical farming systems. The fixed-N inputs from summer-growing forage legumes lablab (Lablab purpureus), burgundy bean (Macroptilium bracteatum) and lucerne (Medicago sativa) and winter-growing legume species snail medic (Medicago scutellata), sulla (Hedysarum coronarium) and purple vetch (Vicia benghalensis) were compared over several growing seasons at four locations in southern Queensland, Australia. Available soil mineral N and grain yield of a following cereal crop were compared among summer-growing legumes and forage sorghum (Sorghum spp. hybrid) and among winter-growing legumes and forage oats (Avena sativa). In the first year at all sites, legumes utilised the high initial soil mineral N, with <30% of the legume N estimated to have been derived from atmospheric N2 (%Ndfa) and legume-fixed N <30 kg/ha. In subsequent years, once soil mineral N had been depleted, %Ndfa increased to 50–70% in the summer-growing legumes and to 60–80% in winter-growing legumes. However, because forage shoot N was removed, rarely did fixed N provide a positive N balance. Both lablab and burgundy bean fixed up to 150 kg N/ha, which was more than lucerne in all seasons. Prior to sowing cereal grain crops, soil nitrate was 30–50 kg/ha higher after summer legumes than after forage sorghum. At one site, lablab and lucerne increased the growth and yield of a subsequent grain sorghum crop by 1.4 t/ha compared with growth after forage sorghum or burgundy bean. Of the winter-growing legumes, sulla had the highest total N2 fixation (up to 150 kg N/ha.year) and inputs of fixed N (up to 75 kg N/ha), and resulted in the highest concentrations of soil N (80–100 kg N/ha more than oats) before sowing of the following crop. Wheat protein was increased after winter legumes, but there was no observed yield benefit for wheat or grain sorghum crops. New forage legume options, lablab, burgundy bean and sulla, showed potential to increase N supply in crop rotations in subtropical farming systems, contributing significant fixed N (75–150 kg/ha) and increasing available soil N for subsequent crops compared to non-legume forage crops. However, high soil mineral N (>50 kg N/ha) greatly reduced N2 fixation by forage legumes, and significant N2 fixation only occurred once legume shoot N uptake exceeded soil mineral N at the start of the growing season. Further work is required to explore the impact of different management strategies, such as livestock grazing rather than harvesting for hay, on the long-term implications for nutrient supply for subsequent crops.



Sign in / Sign up

Export Citation Format

Share Document