Improved seismic inversion and reservoir description of the Ichthys gas-condensate field, Browse Basin, Western Australia
Seismic inversion has become a standard geophysical tool to enhance seismic resolution, predict the reservoir porosity distribution, and to discriminate between reservoir and non-reservoir pay zones. Conventional seismic data does not record the low frequencies necessary for inversion. To enable a complete bandwidth, low frequencies are modelled from well data and are typically interpolated throughout the volume using seismic velocities. This often causes the resultant porosity distribution calculated from the inverted P-impedance to be biased by the well data and the geometry of well locations. Dual-sensor GeoStreamer technology was used to acquire a regional multi-client 2D survey by PGS in 2008, including some lines over the Ichthys gas-condensate field in the Browse Basin. Dual-sensor streamer processing recovers a wider frequency bandwidth than conventional seismic. Receiver ghost removal combined with deep streamer towing simultaneously boosts both the low and high frequencies. The improved bandwidth enables a higher quality of velocity analysis, which further improves resolution throughout the section. Simultaneous inversion of the data validated the uplift of the low frequency data, and significantly reduced the bias towards well data for the low frequency model. The resultant P-impedance data demonstrated an excellent tie to well data. The dual-sensor technology promises to improve the description of the porosity distribution within our reservoir model.